Skip to main content Accessibility help

Ultrafine narrow dispersed copper nanoparticles synthesized by a facile chemical reduction method

  • O. Mondal (a1), A. Datta (a2), D. Chakravorty (a3) and M. Pal (a4)


We have prepared stable ultrafine narrow dispersed copper nanoparticles (Cu-NPs) using a facile chemical reduction technique below room temperature (300 K), without any template. X-ray diffraction and high-resolution transmission electron microscopy studies reveal the growth of highly crystalline Cu-NPs with an average diameter of 2.2 nm. Interestingly, these Cu-NPs demonstrate both interband electronic transitions along with usual surface plasmon resonance, a unique phenomenon previously unobserved in any noble metal nanoparticles. These Cu-NPs do not get oxidized easily and could be suitable candidates for different optical devices, heat transfer liquids, and biological applications.


Corresponding author

Address all correspondence to M. Pal


Hide All
1Sarma, P.K., Srinivas, V., Rao, V.D., and Kumar, A.K.: Experimental study and analysis of lubricants dispersed with nano Cu and TiO2 in a four-stroke two wheeler. Nanoscale Res. Lett. 6, 233 (2011).
2Tani, H. and Oshita, K.: US Patent Specification No 5, 588, 983 (1996).
3Kumar, S. Ananda, Meenakshi, K. Shree, Narashimhan, B.R.V., Srikanth, S., and Arthanareeswaran, G.: Synthesis and characterization of copper nanofluid by a novel one-step method. Mater. Chem. Phys. 113, 57 (2009).
4Huaman, J.L.C., Sato, K., Kurita, S., Matsumoto, T., and Jeyadevan, B.: Copper nanoparticles synthesized by hydroxyl ion assisted alcohol reduction for conducting ink. J. Mater. Chem. 21, 7062 (2011).
5Delgado, K., Quijada, R., Palma, R., and Palza, H.: Polypropylene with embedded copper metal or copper oxide nanoparticles as a novel plastic antimicrobial agent. Lett. Appl. Microbiol. 53, 50 (2011).
6Wei, Y., Chen, S., Kowalczyk, B., Huda, S., Gray, T.P., and Grzybowski, B.A.: Synthesis of stable, low-dispersity copper nanoparticles and nanorods and their antifungal and catalytic properties. J. Phys. Chem. C 114, 15612 (2010).
7Pan, K., Ming, H., Yu, H., Huang, H., Liu, Y., and Kang, Z.: Copper nanoparticles modified silicon nanowires with enhanced cross-coupling catalytic ability. Dalton Trans. 41, 2564 (2012).
8Athawale, A.A., Katre, P.P., Kumar, M., and Majumdar, M.B.: Synthesis of CTAB–IPA reduced copper nanoparticles. Mater. Chem. Phys. 91, 507 (2005).
9Podsvirov, O.A., Sidorov, A.I., Tsekhomskli, V.A., and Vostokov, A.V.: Formation of copper nanocrystals in photochromic glasses under electron irradiation and heat treatment. Phys. Solid State 52, 1906 (2010).
10Yang, J.-G., Zhou, Y.-L., Okamoto, T., Bessho, T., Satake, S., Ichino, R., and Okido, M.: Preparation of oleic acid-capped copper nanoparticles. Chem. Lett. 35, 1190 (2006).
11Mott, D., Galkowski, J., Wang, L., Luo, J., and Zhong, C.-J.: Synthesis of size-controlled and shaped copper nanoparticles. Langmuir 23, 5740 (2007).
12Xiong, J., Wang, Y., Xue, Q., and Wu, X.: Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid. Green Chem. 3, 900 (2011).
13Balogh, L. and Tomalia, D.A.: Poly(Amidoamine) dendrimer-templated nanocomposites. 1. Synthesis of zerovalent copper nanoclusters. J. Am. Chem. Soc. 120, 7355 (1998).
14Zhao, M.Q., Sun, L., and Crooks, R.M.: Preparation of Cu Nanoclusters within dendrimer templates. J. Am. Chem. Soc. 120, 4877 (1998).
15Vilar-Vidal, N., Blanco, M.C., López-Quintela, M.A., Rivas, J., and Serra, C.: Electrochemical synthesis of very stable photoluminescent copper clusters. J. Phys. Chem. C 114, 15924 (2010).
16Vazquez-Vazquez, C., Banobre-Lopez, M., Mitra, A., López-Quintela, M.A., and Rivas, J.: Synthesis of small atomic copper clusters in microemulsions. Langmuir 25, 8208 (2009).
17Zhang, H.-X., Siegert, U., Liu, R., and Cai, W.-B.: facile fabrication of ultrafine copper nanoparticles in organic solvent. Nanoscale Res. Lett. 4, 705 (2009).
18Lutterotti, L.: MAUD, version 2.07, (2008).
19Fievet, F., Fievet-Vincent, F., Lagier, J.-P., Dumontb, B. and Figlarz, M.: Controlled nucleation and growth of micrometre-size copper particles prepared by the polyol process. J. Mater. Chem. 3, 627 (1993).
20Wu, C., Mosher, B.P. and Zeng, T.: One-step green route to narrowly dispersed copper nanocrystals. J. Nanoparticle Res. 8, 965 (2006).
21Pérez-Juste, J., Pastoriza-Santos, I., Liz-Marzán, L.M. and Mulvaney, P.: Gold nanorods: synthesis, characterization and applications. Coordin. Chem. Rev. 249, 1870 (2005).
22Wei, W., Lu, Y., Chen, W. and Chen, S.: One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. J. Am. Chem. Soc. 133, 2060 (2011).
23Ko, E., Choi, J., Okamoto, K., Tak, Y. and Lee, J.: Chem. Phys. Chem. 7, 1505 (2006).
24Ehrenreich, H. and Philipp, H.R.: Optical properties of Ag and Cu. Phys. Rev. 128, 1622 (1962).
25Roy, B., Mondal, O., Sen, D., Bahadur, J., Mazumder, S. and Pal, M.: Influence of annealing on structure and optical properties of Mn-substituted ZnO nanoparticles. J. Appl. Cryst. 44, 991 (2011).
Type Description Title
Supplementary materials

Mondal et al. supplementary material
Supplementary figures

 Word (965 KB)
965 KB

Ultrafine narrow dispersed copper nanoparticles synthesized by a facile chemical reduction method

  • O. Mondal (a1), A. Datta (a2), D. Chakravorty (a3) and M. Pal (a4)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed