Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-18T10:00:21.122Z Has data issue: false hasContentIssue false

Single-atom dynamics in scanning transmission electron microscopy

Published online by Cambridge University Press:  08 September 2017

Rohan Mishra
Affiliation:
Department of Mechanical Engineering and Materials Science; and Institute of Materials Science and Engineering, Washington University, USA; rmishra@wustl.edu
Ryo Ishikawa
Affiliation:
Institute of Engineering Innovation, The University of Tokyo, Japan; ishikawa@sigma.t.u-tokyo.ac.jp
Andrew R. Lupini
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, USA; arl1000@ornl.gov
Stephen J. Pennycook
Affiliation:
Department of Materials Science and Engineering, National University of Singapore, Singapore; The University of Tennessee, USA; and Vanderbilt University, USA; steve.pennycook@nus.edu.sg; or msepsj@nus.edu.sg
Get access

Abstract

The correction of aberrations in the scanning transmission electron microscope (STEM) has simultaneously improved both spatial and temporal resolution, making it possible to capture the dynamics of single atoms inside materials, and resulting in new insights into the dynamic behavior of materials. In this article, we describe the different beam–matter interactions that lead to atomic excitations by transferring energy and momentum. We review recent examples of sequential STEM imaging to demonstrate the dynamic behavior of single atoms both within materials, at dislocations, at grain and interface boundaries, and on surfaces. We also discuss the effects of such dynamic behavior on material properties. We end with a summary of ongoing instrumental and algorithm developments that we anticipate will improve the temporal resolution significantly, allowing unprecedented insights into the dynamic behavior of materials at the atomic scale.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Duscher, G., Chisholm, M.F., Alber, U., Ruhle, M., Nat. Mater. 3, 621 (2004).Google Scholar
Kim, M., Duscher, G., Browning, N.D., Sohlberg, K., Pantelides, S.T., Pennycook, S.J., Phys. Rev. Lett. 86, 4056 (2001).Google Scholar
Frechero, M.A., Rocci, M., Sanchez-Santolino, G., Kumar, A., Salafranca, J., Schmidt, R., Diaz-Guillen, M.R., Dura, O.J., Rivera-Calzada, A., Mishra, R., Jesse, S., Pantelides, S.T., Kalinin, S.V., Varela, M., Pennycook, S.J., Santamaria, J., Leon, C., Sci. Rep. 5, 17229 (2015).Google Scholar
Xiang, Z.L., Ashhab, S., You, J.Q., Nori, F., Rev. Mod. Phys. 85, 623 (2013).Google Scholar
Kalinin, S.V., Borisevich, A., Jesse, S., Nature 539, 485 (2016).Google Scholar
Jesse, S., Borisevich, A.Y., Fowlkes, J.D., Lupini, A.R., Rack, P.D., Unocic, R.R., Sumpter, B.G., Kalinin, S.V., Belianinov, A., Ovchinnikova, O.S., ACS Nano 10, 5600 (2016).CrossRefGoogle Scholar
Yang, Y., Chen, C.C., Scott, M.C., Ophus, C., Xu, R., Pryor, A., Wu, L., Sun, F., Theis, W., Zhou, J., Eisenbach, M., Kent, P.R., Sabirianov, R.F., Zeng, H., Ercius, P., Miao, J., Nature 542, 75 (2017).CrossRefGoogle Scholar
Ishikawa, R., Lupini, A.R., Findlay, S.D., Taniguchi, T., Pennycook, S.J., Nano Lett. 14, 1903 (2014).Google Scholar
Hwang, J., Zhang, J.Y., D’Alfonso, A.J., Allen, L.J., Stemmer, S., Phys. Rev. Lett. 111, 266101 (2013).Google Scholar
LeBeau, J.M., Findlay, S.D., Allen, L.J., Stemmer, S., Nano Lett. 10, 4405 (2010).Google Scholar
Krivanek, O.L., Chisholm, M.F., Dellby, N., Murfitt, M.F., “Atomic-Resolution STEM at Low Primary Energies,” in Scanning Transmission Electron Microscopy: Imaging and Analysis, Pennycook, S.J., Nellist, P.D., Eds. (Springer , New York, 2011), p. 615.Google Scholar
Egerton, R.F., Li, P., Malac, M., Micron 35, 399 (2004).Google Scholar
Egerton, R.F., McLeod, R., Wang, F., Malac, M., Ultramicroscopy 110, 991 (2010).Google Scholar
Henkelman, G., Uberuaga, B.P., Jónsson, H., J. Chem. Phys. 113, 9901 (2000).Google Scholar
Jiang, N., Hembree, G.G., Spence, J.C.H., Qiu, J., de Abajo, F.J.G., Silcox, J., Appl. Phys. Lett. 83, 551 (2003).Google Scholar
Su, D., Wang, F., Ma, C., Jiang, N., Nano Energy 2, 343 (2013).Google Scholar
Jiang, N., Rep. Prog. Phys. 79, 016501 (2016).Google Scholar
Parkinson, G.S., Novotny, Z., Argentero, G., Schmid, M., Pavelec, J., Kosak, R., Blaha, P., Diebold, U., Nat. Mater. 12, 724 (2013).Google Scholar
Gohlke, D., Mishra, R., Restrepo, O.D., Lee, D., Windl, W., Gupta, J., Nano Lett. 13, 2418 (2013).Google Scholar
Isaacson, M.S., Langmore, J., Parker, N.W., Kopf, D., Utlaut, M., Ultramicroscopy 1, 359 (1976).CrossRefGoogle Scholar
Isaacson, M., Kopf, D., Utlaut, M., Parker, N.W., Crewe, A.V., Proc. Natl. Acad. Sci. U.S.A. 74, 1802 (1977).Google Scholar
Batson, P.E., Microsc. Microanal. 14, 89 (2008).Google Scholar
Pennycook, T.J., McBride, J.R., Rosenthal, S.J., Pennycook, S.J., Pantelides, S.T., Nano Lett. 12, 3038 (2012).CrossRefGoogle Scholar
Han, C.W., Iddir, H., Uzun, A., Curtiss, L.A., Browning, N.D., Gates, B.C., Ortalan, V., J. Phys. Chem. Lett. 6, 4675 (2015).Google Scholar
Krivanek, O.L., Zhou, W., Chisholm, M.F., Idrobo, J.C., Lovejoy, T.C., Ramasse, Q.M., Dellby, N., “Gentle STEM of Single Atoms: Low keV Imaging and Analysis at Ultimate Detection Limits,” in Low Voltage Electron Microscopy: Principles and Applications, Bell, D.C., Erdman, N., Eds. (Wiley and Royal Microscopical Society, Oxford, UK, 2012), p. 119.Google Scholar
Krivanek, O.L., Chisholm, M.F., Nicolosi, V., Pennycook, T.J., Corbin, G.J., Dellby, N., Murfitt, M.F., Own, C.S., Szilagyi, Z.S., Oxley, M.P., Pantelides, S.T., Pennycook, S.J., Nature 464, 571 (2010).Google Scholar
Girit, Ç.Ö., Meyer, J.C., Erni, R., Rossell, M.D., Kisielowski, C., Yang, L., Park, C.-H., Crommie, M.F., Cohen, M.L., Louie, S.G., Zettl, A., Science 323, 1705 (2009).Google Scholar
Kurasch, S., Kotakoski, J., Lehtinen, O., Skakalova, V., Smet, J., Krill, C.E. III, Krasheninnikov, A.V., Kaiser, U., Nano Lett. 12, 3168 (2012).Google Scholar
Komsa, H.-P., Kurasch, S., Lehtinen, O., Kaiser, U., Krasheninnikov, A.V., Phys. Rev. B Condens. Matter 88 , 035301 (2013).Google Scholar
Lehtinen, O., Vats, N., Algara-Siller, G., Knyrim, P., Kaiser, U., Nano Lett. 15, 235 (2015).Google Scholar
Komsa, H.P., Kotakoski, J., Kurasch, S., Lehtinen, O., Kaiser, U., Krasheninnikov, A.V., Phys. Rev. Lett. 109 , 035503 (2012).Google Scholar
Mishra, R., Zhou, W., Pennycook, S.J., Pantelides, S.T., Idrobo, J.C., Phys. Rev. B Condens. Matter 88, 144409 (2013).Google Scholar
He, Z., He, K., Robertson, A.W., Kirkland, A.I., Kim, D., Ihm, J., Yoon, E., Lee, G.D., Warner, J.H., Nano Lett. 14, 3766 (2014).Google Scholar
Robertson, A.W., Lee, G.D., He, K., Yoon, E., Kirkland, A.I., Warner, J.H., Nano Lett. 14, 1634 (2014).Google Scholar
Chen, Q., He, K., Robertson, A.W., Kirkland, A.I., Warner, J.H., ACS Nano 10, 10418 (2016).Google Scholar
Gong, C.C., Robertson, A.W., He, K., Lee, G.D., Yoon, E., Allen, C.S., Kirkland, A.I., Warner, J.H., ACS Nano 9, 10066 (2015).Google Scholar
Freysoldt, C., Grabowski, B., Hickel, T., Neugebauer, J., Kresse, G., Janotti, A., Van de Walle, C.G., Rev. Mod. Phys. 86, 253 (2014).Google Scholar
Lee, J., Zhou, W., Pennycook, S.J., Idrobo, J.C., Pantelides, S.T., Nat. Commun. 4, 1650 (2013).Google Scholar
Kotakoski, J., Mangler, C., Meyer, J.C., Nat. Commun. 5, 3991 (2014).CrossRefGoogle Scholar
Susi, T., Kotakoski, J., Kepaptsoglou, D., Mangler, C., Lovejoy, T.C., Krivanek, O.L., Zan, R., Bangert, U., Ayala, P., Meyer, J.C., Ramasse, Q., Phys. Rev. Lett. 113, 115501 (2014).Google Scholar
Li, H., Wang, S., Sawada, H., Han, G.G., Samuels, T., Allen, C.S., Kirkland, A.I., Grossman, J.C., Warner, J.H., ACS Nano 11, 3392 (2017).Google Scholar
Pennycook, S.J., Nellist, P.D., Eds., Scanning Transmission Electron Microscopy: Imaging and Analysis (Springer-Verlag, New York, 2011).Google Scholar
Pennycook, S.J., MRS Bull. 37, 943 (2012).Google Scholar
Lin, J., Cretu, O., Zhou, W., Suenaga, K., Prasai, D., Bolotin, K.I., Cuong, N.T., Otani, M., Okada, S., Lupini, A.R., Idrobo, J.-C., Caudel, D., Burger, A., Ghimire, N.J., Yan, J., Mandrus, D.G., Pennycook, S.J., Pantelides, S.T., Nat. Nanotechnol. 9, 436 (2014).Google Scholar
Susi, T., Meyer, J.C., Kotakoski, J., Ultramicroscopy 180, 163 (2017).Google Scholar
Ishikawa, R., Mishra, R., Lupini, A.R., Findlay, S.D., Taniguchi, T., Pantelides, S.T., Pennycook, S.J., Phys. Rev. Lett. 113, 155501 (2014).CrossRefGoogle Scholar
Oh, S.H., van Benthem, K., Molina, S.I., Borisevich, A.Y., Luo, W., Werner, P., Zakharov, N.D., Kumar, D., Pantelides, S.T., Pennycook, S.J., Nano Lett. 8, 1016 (2008).Google Scholar
Bowers, M.L., Ophus, C., Gautam, A., Lancon, F., Dahmen, U., Phys. Rev. Lett. 116, 106102 (2016).Google Scholar
Peter, N.J., Liebscher, C.H., Kirchlechner, C., Dehm, G., J. Mater. Res. 32, 968 (2016).Google Scholar
Li, C., Zhang, Y.-Y., Pennycook, T.J., Wu, Y., Lupini, A.R., Paudel, N., Pantelides, S.T., Yan, Y., Pennycook, S.J., Appl. Phys. Lett. 109, 143107 (2016).Google Scholar
Li, C., Wu, Y., Pennycook, T.J., Lupini, A.R., Leonard, D.N., Yin, W., Paudel, N., Al-Jassim, M., Yan, Y., Pennycook, S.J., Phys. Rev. Lett. 111, 096403 (2013).Google Scholar
Gao, P., Ishikawa, R., Tochigi, E., Kumamoto, A., Shibata, N., Ikuhara, Y., Chem. Mater. 29, 1006 (2017).Google Scholar
Ryoo, H., Bae, H.B., Kim, Y.M., Kim, J.G., Lee, S., Chung, S.Y., Angew. Chem. Int. Ed. Engl. 54, 7963 (2015).Google Scholar
Jang, J.H., Kim, Y.M., He, Q., Mishra, R., Qiao, L., Biegalski, M.D., Lupini, A.R., Pantelides, S.T., Pennycook, S.J., Kalinin, S.V., Borisevich, A.Y., ACS Nano 11, 6942 (2017).Google Scholar
Yao, L., Majumdar, S., Akaslompolo, L., Inkinen, S., Qin, Q.H., van Dijken, S., Adv. Mater. 26, 2789 (2014).Google Scholar
Pennycook, T.J., Jones, L., Pettersson, H., Coelho, J., Canavan, M., Mendoza-Sanchez, B., Nicolosi, V., Nellist, P.D., Sci. Rep. 4, 7555 (2014).Google Scholar
Sawada, H., Shimura, N., Hosokawa, F., Shibata, N., Ikuhara, Y., Microscopy 64, 213 (2015).Google Scholar
Ishikawa, R., Pennycook, S.J., Lupini, A.R., Findlay, S.D., Shibata, N., Ikuhara, Y., Appl. Phys. Lett. 109, 163102 (2016).Google Scholar
Ishikawa, R., Lupini, A.R., Hinuma, Y., Pennycook, S.J., Ultramicroscopy 151, 122 (2015).Google Scholar
Sang, X., Lupini, A.R., Unocic, R.R., Chi, M., Borisevich, A.Y., Kalinin, S.V., Endeve, E., Archibald, R.K., Jesse, S., Adv. Struct. Chem. Imaging 2, 6 (2016).Google Scholar
Furnival, T., Leary, R.K., Midgley, P.A., Ultramicroscopy 178, 112 (2016).Google Scholar
Stevens, A., Yang, H., Carin, L., Arslan, I., Browning, N.D., Microscopy 63, 41 (2014).Google Scholar
Sang, X., Xie, Y., Lin, M.-W., Alhabeb, M., Van Aken, K.L., Gogotsi, Y., Kent, P.R.C., Xiao, K., Unocic, R.R., ACS Nano 10, 9193 (2016).Google Scholar
Pennycook, S.J., Jesson, D.E., Phys. Rev. Lett. 64, 938 (1990).Google Scholar
Pennycook, S.J., Jesson, D.E., Ultramicroscopy 37, 14 (1991).Google Scholar
Kim, H., Zhang, J.Y., Raghavan, S., Stemmer, S., Phys. Rev. X 6, 041063 (2016).Google Scholar