Skip to main content Accessibility help

Cell sheet engineering for integrating functional tissue in vivo: Successes and challenges

  • Nicholas Baksh (a1), Nathan D. Gallant (a2) and Ryan G. Toomey (a3)


“Bottom-up” assembly of fully functional cell-based materials has enormous potential for replicating endogenous tissues. Currently, most tissue-engineering strategies are based on incorporating dissociated cells into an artificial three-dimensional matrix of supportive structural elements that direct cellular migration, proliferation, and organization. The matrix provides “top-down” guidance cues that impose assembly directions on the cells; however, the matrix also competes for space and limits fully functional, cell-dense tissues. This article focuses on bottom-up fabrication of functional tissue by cell sheet engineering. Cell sheet engineering is based on the sequential stacking and adhesion of confluent and organized cell monolayers from two-dimensional cell culture without the need for artifical scaffolds or structural intermediates. The resulting functional cellular monolayers (either individually or as stacked sheets) can then be directly implanted into living systems. Clinical successes are highlighted as well as attempts to overcome the vascularization limit often observed in engineered tissues.



Hide All
1. Chick, L.R., Ann. Plast. Surg. 21, 358 (1988).
2. Harrison, R.G., J. Exp. Zool. 9, 787 (1910).
3. Pampaloni, F., Reynaud, E.G., Stelzer, E.H.K., Nat. Rev. Mol. Cell Biol. 8, 839 (2007).
4. Elsdale, T., Bard, J., J. Cell Biol. 54, 626 (1972).
5. Delcommenne, M., Streuli, C.H., J. Biol. Chem. 270, 26794 (1995).
6. Knowlton, S., Cho, Y.K., Li, X.J., Khademhosseini, A., Tasoglu, S., Biomater. Sci. UK 4, 768 (2016).
7. Heydrick, S., Roberts, E., Kim, J., Emani, S., Wong, J.Y., Curr. Opin. Biotechnol. 40, 119 (2016).
8. Wei, B., Dai, M.J., Yin, P., Nature 485, 623 (2012).
9. Carmeliet, P., Jain, R.K., Nat. Rev. Drug Discov. 10, 417 (2011).
10. Okano, T., Yamada, N., Sakai, H., Sakurai, Y., J. Biomed. Mater. Res. 27, 1243 (1993).
11. Huang, H.L., Hsing, H.W., Lai, T.C., Chen, Y.W., Lee, T.R., Chan, H.T., Lyu, P.C., Wu, C.L., Lu, Y.C., Lin, S.T., Lin, C.W., Lai, C.H., Chang, H.T., Chou, H.C., Chan, H.L., J. Biomed. Sci. 17, 11 (2010).
12. Sumide, T., Nishida, K., Yamato, M., Ide, T., Hayashida, Y., Watanabe, K., Yang, J., Kohno, C., Kikuchi, A., Maeda, N., Watanabe, H., Okano, T., Tano, Y., FASEB J. 20, 392 (2006).
13. Yamato, M., Okuhara, M., Karikusa, F., Kikuchi, A., Sakurai, Y., Okano, T., J. Biomed. Mater. Res. 44, 44 (1999).
14. Ingber, D.E., Dike, L., Hansen, L., Karp, S., Liley, H., Maniotis, A., McNamee, H., Mooney, D., Plopper, G., Sims, J., Wang, N., Int. Rev. Cytol. 150, 173 (1994).
15. Hirose, M., Kwon, O.H., Yamato, M., Kikuchi, A., Okano, T., Biomacromolecules 1, 377 (2000).
16. Ito, A., Hayashida, M., Honda, H., Hata, K.I., Kagami, H., Ueda, M., Kobayashi, T., Tissue Eng. 10, 873 (2004).
17. Yeo, W.S., Mrksich, M., Langmuir 22, 10816 (2006).
18. Hong, Y., Yu, M.F., Weng, W.J., Cheng, K., Wang, H.M., Lin, J., Biomaterials 34, 11 (2013).
19. Akintewe, O.O., DuPont, S.J., Elineni, K.K., Cross, M.C., Toomey, R.G., Gallant, N.D., Acta Biomater. 11, 96 (2015).
20. Yamato, M., Konno, C., Kushida, A., Hirose, M., Utsumi, M., Kikuchi, A., Okano, T., Biomaterials 21, 981 (2000).
21. Iwata, T., Washio, K., Yoshida, T., Ishikawa, I., Ando, T., Yamato, M., Okano, T., J. Tissue Eng. Regen. Med. 9, 343 (2015).
22. Nishida, K., Yamato, M., Hayashida, Y., Watanabe, K., Yamamoto, K., Adachi, E., Nagai, S., Kikuchi, A., Maeda, N., Watanabe, H., Okano, T., Tano, Y., N. Engl. J. Med. 351, 1187 (2004).
23. Burillon, C., Huot, L., Justin, V., Nataf, S., Chapuis, F., Decullier, E., Damour, O., Invest. Ophthalmol. Vis. Sci. 53, 1325 (2012).
24. Sawa, Y., Miyagawa, S., Sakaguchi, T., Fujita, T., Matsuyama, A., Saito, A., Shimizu, T., Okano, T., Surg. Today 42, 181 (2012).
25. Ohki, T., Yamato, M., Murakami, D., Takagi, R., Yang, J., Namiki, H., Okano, T., Takasaki, K., Gut 55, 1704 (2006).
27. Wakitani, S., Imoto, K., Yamamoto, T., Saito, M., Murata, N., Yoneda, M., Osteoarthr. Cartil. 10, 199 (2002).
28. Kaneshiro, N., Sato, M., Ishihara, M., Mitani, G., Sakai, H., Mochida, J., Biochem. Biophys. Res. Commun. 349, 723 (2006).
29. Shimizu, T., Sekine, H., Isoi, Y., Yamato, M., Kikuchi, A., Okano, T., Tissue Eng. 12, 499 (2006).
30. Ohashi, K., Yokoyama, T., Yamato, M., Kuge, H., Kanehiro, H., Tsutsumi, M., Amanuma, T., Iwata, H., Yang, J., Okano, T., Nakajima, Y., Nat. Med. 13, 880 (2007).
31. Sasagawa, T., Shimizu, T., Sekiya, S., Haraguchi, Y., Yamato, M., Sawa, Y., Okano, T., Biomaterials 31, 1646 (2010).
32. Shimizu, T., Sekine, H., Yang, J., Isoi, Y., Yamato, M., Kikuchi, A., Kobayashi, E., Okano, T., FASEB J. 20, 708 (2006).
33. Sakaguchi, K., Shimizu, T., Horaguchi, S., Sekine, H., Yamato, M., Umezu, M., Okano, T., Sci. Rep. UK 3, 1316 (2013).


Cell sheet engineering for integrating functional tissue in vivo: Successes and challenges

  • Nicholas Baksh (a1), Nathan D. Gallant (a2) and Ryan G. Toomey (a3)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed