Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-9dmbd Total loading time: 0.323 Render date: 2021-03-05T11:27:56.179Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Scanning probe-type data storage beyond hard disk drive and flash memory

Published online by Cambridge University Press:  10 May 2018

Yasuo Cho
Affiliation:
Research Institute of Electrical Communication, Tohoku University, Japan; yasuocho@riec.tohoku.ac.jp
Seungbum Hong
Affiliation:
Korea Advanced Institute of Science and Technology, South Korea; seungbum@kaist.ac.kr
Corresponding
Get access

Abstract

High-density storage technology beyond hard disk drives and flash memory is required. Efforts are underway to develop new high-density storage technology based on scanning probe-based data storage. One of the candidates for scanning probe-type storage is thermomechanical data storage (also known as millipede, developed by IBM Zürich), and another is ferroelectric data storage. In this article, probe data-storage technologies are overviewed. Thermomechanical data storage and ferroelectric data storage are described in detail for next-generation high-density data-storage technology based on scanning probe microscopy. Ferroelectric data storage and scanning nonlinear dielectric microscopy-based and field-effect transistor-type probe-based probe data storage are also described.

Type
Materials for Advanced Semiconductor Memories
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below.

References

Hong, S., Park, N.Y., “Resistive Probe Storage Devices,” in Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, Kalinin, S., Gruverman, A., Eds. (Springer, New York, 2007), pp. 943973.CrossRefGoogle Scholar
Wang, S.X., Taratorin, A.M., Magnetic Information Storage Technology (Academic Press, San Diego, 1999), chap. 1.Google Scholar
Khizroev, S., Litvinov, D., J. Appl. Phys. 95 (9), 4521 (2004).CrossRefGoogle Scholar
Binnig, G., Quate, C.F., Gerber, Ch., Phys. Rev. Lett. 56, 930 (1986), pp. 259273.CrossRefGoogle Scholar
Lutwyche, M., Andreoli, C., Binnig, G., Brugger, J., Drechsler, U., Häberle, W., Rohrer, H., Rothuizen, H., Vettiger, P., Yaralioglu, G., Quate, C., Sens. Actuators A Phys. 73 (1–2), 89 (1999).CrossRefGoogle Scholar
Vettiger, P., Cross, G., Despont, M., Drechsler, U., Dürig, U., Gotsmann, B., Häberle, W., Lantz, M.A., Rothuizen, H.E., Stutz, R., Binnig, G.K., IEEE Transactions on Nanotechnol. 1, 39 (2002),CrossRefGoogle Scholar
Gruener, W., “IBM Puts Millipede on Public Display” (March 11, 2005), http://www.tomshardware.com/news/ibm-puts-millipede-public-display,755.html.Google Scholar
Eleftheriou, E., Antonakopoulos, T., Binnig, G.K., Cherubini, G., Despont, M., Dholakia, A., Duerig, U., Lantz, M.A., Pozidis, H., Rothuizen, H.E., Vettiger, P., IEEE Trans. Magn. 39 (2), 938 (2003).CrossRefGoogle Scholar
Lutwyche, M.I., Despont, M., Drechsler, U., Durig, U., Haberle, W., Rothuizen, H., Stutz, R., Widmer, R., Binnig, G.K., Vettiger, P., Appl. Phys. Lett. 77 (20), 3299 (2000).CrossRefGoogle Scholar
Pozidis, H., Haeberle, W., Wiesmann, D.W., Drechsler, U., Despont, M., Albrecht, T., Eleftherioum, E.S., IEEE Trans. Magn. 40 (4), 2531 (2004).CrossRefGoogle Scholar
HP, “ARS: HP’s Probe Storage Program,” http://www.hp.com/hpinfo/abouthp/iplicensing/ars.html.Google Scholar
Zhao, Y., Johns, E., Forrester, M., “A MEMS Read-Write Head for Ferroelectric Probe Storage,” in 2008 IEEE 21st Int. Conf. Micro Electro Mech. Syst. (2008), pp. 152155.CrossRefGoogle Scholar
Forrester, M.G., Ahner, J.W., Bedillion, M.D., Bedoya, C., Bolten, D.G., Chang, K.-C., de Gersem, G., Hu, S., Johns, E.C., Nassirou, M., Palmer, J., Roelofs, A., Siegert, M., Tamaru, S., Vaithyanathan, V., Zavaliche, F., Zhao, T., Zhao, Y., Nanotechnology 20 (22), 225501 (2009).CrossRefGoogle Scholar
Yano, K., Kyogaku, M., Kuroda, R., Shimada, Y., Shido, S., Matsuda, H., Takimoto, K., Albrecht, O., Eguchi, K., Nakagiri, T., Appl. Phys. Lett. 68 (2), 188 (1996).CrossRefGoogle Scholar
Takahashi, H., Ono, T., Cho, Y., Esashi, M.I., “Diamond Probe for Ultra-High Density Data Storage Based on Scanning Nonlinear Dielectric Microscopy,” 17th IEEE Int. Conf. Micro Electro Mech. Syst.: Maastricht MEMS 2004 Tech. Dig. 536539 (2004).Google Scholar
Lee, C.S., Nam, H.-J., Kim, Y.-S., Jin, W.-H., Cho, S.-M., Bu, J.-U., Appl. Phys. Lett. 83 (23), 4839 (2003);CrossRefGoogle Scholar
Setter, N., Damjanovic, D., Eng, L., Fox, G., Gevorgian, S., Hong, S., Kohlstedt, H., Kingon, A., Park, N.Y., Stephenson, G.B., Stolitchnov, I., Tagantsev, A.K., Taylor, D.V., Yamada, T., Streiffer, S., J. Appl. Phys. 100, 051606 (2006).Google Scholar
Kim, B.M., Adams, D.E., Tran, Q., Ma, Q., Rao, V., Appl. Phys. Lett. 94, 063105 (2009).CrossRefGoogle Scholar
Park, H., Jung, J., Min, D.-K., Kim, S., Hong, S., Shin, H., Appl. Phys. Lett. 84, 1734 (2004).CrossRefGoogle Scholar
Ko, H., Ryu, K., Park, H., Park, C., Kim, Y.K., Jung, J., Min, D.-K., Kim, Y., Shin, H., Hong, S., Nano Lett. 11, 1428 (2011).CrossRefGoogle Scholar
Hong, S., Tong, S., Park, W.I., Hiranaga, Y., Cho, Y., Roelofs, A., Proc. Natl. Acad. Sci. U.S.A. 111, 6566 (2014).CrossRefGoogle Scholar
Cho, Y., Adv. Imaging Electron Phys. 127, 1 (2003).CrossRefGoogle Scholar
Merz, W.J., Phys. Rev. 95, 3 (1954).CrossRefGoogle Scholar
Matsuura, K., Cho, Y., Ramesh, R., Appl. Phys. Lett. 83, 2650 (2003).CrossRefGoogle Scholar
Jona, F., Shirane, G., Ferroelectric Crystals (Pergamon Press, London, 1962), p. 46.Google Scholar
Cho, Y., Kirihara, A., Saeki, T., Rev. Sci. Instrum. 67, 2297 (1996).CrossRefGoogle Scholar
Cho, Y., Kazuta, S., Matsuura, K., Appl. Phys. Lett. 75, 2833 (1999).CrossRefGoogle Scholar
Cho, Y., Advances in Imaging and Electron Physics, Hawkes, P., Ed. (Academic Press, New York, 2003), vol. 127, p. 1.Google Scholar
Cho, Y., Jpn. J. Appl. Phys. 46, 4428 (2007).CrossRefGoogle Scholar
Cho, Y., Hirose, R., Phys. Rev. Lett. 99, 186101 (2007).CrossRefGoogle Scholar
Guthner, P., Dransfeld, K., Appl. Phys. Lett. 61, 1137 (1992).CrossRefGoogle Scholar
Hidaka, T., Maruyama, T., Satoh, M., Mikoshiba, N., Shimizu, M., Shiozaki, T., Wills, L.A., Hiskes, R., Dicarolis, S.A., Amano, J., Appl. Phys. Lett. 68, 2358 (1996).CrossRefGoogle Scholar
Gruverman, A.L., Hatano, J., Tokumoto, H., Jpn. J. Appl. Phys. 36, 2207 (1997).CrossRefGoogle Scholar
Eng, L.M., Bammerlin, M., Loppacher, Ch., Guggisberg, M., Bennewitz, R., Luthi, R., Meyer, E., Huser, Th., Heinzelmann, H., Guntherodt, H.-J., Ferroelectrics 222, 153 (1999).CrossRefGoogle Scholar
Paruch, P., Tybell, T., Triscone, J.-M., Appl. Phys. Lett. 79, 530 (2001).CrossRefGoogle Scholar
Tanaka, K., Kurihashi, Y., Uda, T., Daimon, Y., Odagawa, N., Hirose, R., Hiranaga, Y., Cho, Y., Jpn. J. Appl. Phys. 47, 3311 (2008).CrossRefGoogle Scholar
Tanaka, K., Cho, Y., Appl. Phys. Lett. 97, 092901 (2010).CrossRefGoogle Scholar
Hiranaga, Y., Uda, T., Kurihashi, Y., Tochishita, H., Kadota, M., Cho, Y., Jpn. J. Appl. Phys. 48, 09KA18 (2009).CrossRefGoogle Scholar
Aoki, T., Hiranaga, Y., Cho, Y., J. Appl. Phys. 119, 184101 (2016).CrossRefGoogle Scholar
Park, H.-S., Jung, J.-H., Hong, S.-B., US Patent 7,338,831 B2 (2003).Google Scholar
Kim, J., Lee, J., Song, I., Lee, J.D., Park, B.-G., Hong, S., Ko, H., Min, D.-K., Park, H., Park, C., Jung, J., Shin, H., Jpn. J. Appl. Phys. 47, 1717 (2008).CrossRefGoogle Scholar
Ahn, C.H., Rabe, K.M., Triscone, J.M., Science 303, 488 (2004).CrossRefGoogle Scholar
Waser, R., Rüdiger, A., Nat. Mater. 3, 81 (2004).CrossRefGoogle Scholar
Colla, E.L., Hong, S., Taylor, D.V., Tagantsev, A.K., No, K., Setter, N., Appl. Phys. Lett. 72, 2763 (1998).CrossRefGoogle Scholar
Hong, S., Nakhmanson, S.M., Fong, D.D., Rep. Prog. Phys. 79, 076501 (2016).CrossRefGoogle Scholar
Fong, D.D., Stephenson, G.B., Streiffer, S.K., Eastman, J.A., Auciello, O., Fuoss, P.H., Thompson, C., Science 304, 1650 (2004).CrossRefGoogle Scholar
Woo, J., Hong, S., Min, D.K., Shin, H., No, K., Appl. Phys. Lett. 80, 4000 (2002).CrossRefGoogle Scholar
Hong, S., Kim, Y., “Ferroelectric Probe Storage Devices,” in Emerging Non-volatile Memories, Hong, S., Auciello, O., Wouters, D., Eds. (Springer, New York, 2014).CrossRefGoogle Scholar
Hong, S.-B., Choa, S.-H., Jung, J.-H., Koo, H.-S., Kim, Y.K., “Ferroelectric Hard Disk System,” US Patent 8,248,906 B2 (2007).Google Scholar
Kim, Y., Bae, C., Ryu, K., Ko, H., Kim, Y.K., Hong, S., Shin, H., Appl. Phys. Lett. 94, 032907 (2009).CrossRefGoogle Scholar
Jiang, A.Q., Lee, H.J., Kim, G.H., Hwang, C.S., Adv. Mater. 21, 2870 (2009).CrossRefGoogle ScholarPubMed
Gantz, J., Reinsel, D., “IDC iVIEW: The Digital Universe in 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East” (sponsored by EMC Corporation, December 2012).Google Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 39
Total number of PDF views: 180 *
View data table for this chart

* Views captured on Cambridge Core between 10th May 2018 - 5th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Scanning probe-type data storage beyond hard disk drive and flash memory
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Scanning probe-type data storage beyond hard disk drive and flash memory
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Scanning probe-type data storage beyond hard disk drive and flash memory
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *