Skip to main content Accessibility help
×
Home

Article contents

Flexible and stretchable sensors for fluidic elastomer actuated soft robots

Published online by Cambridge University Press:  02 February 2017

Shuo Li
Affiliation:
Department of Materials Science and Engineering, Cornell University, USA; sl2699@cornell.edu
Huichan Zhao
Affiliation:
Sibley School of Mechanical and Aerospace Engineering, Cornell University, USA; hz282@cornell.edu
Robert F. Shepherd
Affiliation:
Department of Materials Science and Engineering, Sibley School of Mechanical and Aerospace Engineering, Cornell University, USA; rfs247@cornell.edu
Corresponding
Get access

Abstract

Compliant robots, a class of so-called soft robots, made from elastomeric materials, require flexible or stretchable sensors for functional sophistication beyond that of open-loop controls and actuations. These robots have expanded the scope of research in robotics from fast, strong, and precise industrial manufacturing toward new needs of adaptation and safety—the realm of human–robot interactions (HRIs). HRIs include circumstances ranging from existing tasks such as vacuum cleaning to the far-reaching goal of direct contact with the heart for ventricular assist devices, and wearable robots as an intermediate task for force-augmenting exoskeletons. Toward these goals, many efforts are being made to impart sensation for feedback control via flexible or stretchable sensors that can be integrated with the soft bodies of these robots without hindering their motion or reducing their safety. This article briefly reviews the key techniques and tradeoffs for designing and fabricating these sensors. We describe the sensors that our research group uses for fluidically powered soft robots. We conclude with some perspectives about future directions of sensing integration for improved autonomy and interaction with humans in close proximity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

Ilievski, F., Mazzeo, A.D., Shepherd, R.F., Chen, X., Whitesides, G.M., Angew. Chem. Int. Ed. 50, 1890 (2011).CrossRef
Lin, H.-T., Leisk, G.G., Trimmer, B., Bioinspir. Biomim. 6, 26007 (2011).CrossRef
Chan, V., Park, K., Collens, M.B., Kong, H., Saif, T.A., Bashir, R., Sci. Rep. 2, 857 (2012).CrossRef
Anderson, I.A., Gisby, T.A., McKay, T.G., O’Brien, B.M., Calius, E.P., J. Appl. Phys. 112, 041101 (2012).CrossRef
Liang, X., Boppart, S.A., IEEE Trans. Biomed. Eng. 57, 953 (2010).CrossRef
Saunders, F., Golden, E., White, R.D., Rife, J., Robotica 29, 823 (2011).CrossRef
Polygerinos, P., Wang, Z., Galloway, K.C., Wood, R.J., Walsh, C.J., Robot. Auton. Syst. 73, 135 (2015).CrossRef
Rus, D., Tolley, M.T., Nature 521, 467 (2015).CrossRef
Shepherd, R.F., Ilievski, F., Choi, W., Morin, S.A., Stokes, A.A., Mazzeo, A.D., Chen, X., Wang, M., Whitesides, G.M., Proc. Natl. Acad. Sci. U.S.A. 108, 20400 (2011).CrossRef
Martinez, R.V., Branch, J.L., Fish, C.R., Jin, L., Shepherd, R.F., Nunes, R.M.D., Suo, Z., Whitesides, G.M., Adv. Mater. 25, 205 (2013).CrossRef
Mosadegh, B., Polygerinos, P., Keplinger, C., Wennstedt, S., Shepherd, R.F., Gupta, U., Shim, J., Bertoldi, K., Walsh, C.J., Whitesides, G.M., Adv. Funct. Mater. 24, 2163 (2014).CrossRef
Wehner, M., Tolley, M.T., Menguc, Y., Park, Y.-L., Mozeika, A., Ding, Y., Onal, C., Shepherd, R.F., Whitesides, G.M., Wood, R.J., Soft Robot. 1, 263 (2014).CrossRef
Tolley, M.T., Shepherd, R.F., Mosadegh, B., Galloway, K.C., Wehner, M., Karpelson, M., Wood, R.J., Whitesides, G.M., Soft Robot. 1, 213 (2014).CrossRef
Marchese, A.D., Onal, C.D., Rus, D., in Experimental Robotics: 13th International Symposium on Experimental Robotics, Desai, J.P., Dudek, G., Khatib, O., Kumar, V., Eds. (Springer, Heidelberg, Germany, 2013), vol. 88, pp. 4154.CrossRefGoogle Scholar
Shepherd, R.F., Stokes, A.A., Freake, J., Barber, J., Snyder, P.W., Mazzeo, A.D., Cademartiri, L., Morin, S.A., Whitesides, G.M., Angew. Chem. Int. Ed. 52, 2892 (2013).CrossRef
Marchese, A.D., Onal, C.D., Rus, D., Soft Robot. 1, 75 (2014).CrossRef
Katzschmann, R.K., Marchese, A.D., Rus, D., in Experimental Robotics: 14th International Symposium on Experimental Robotics, Hsieh, M.A., Khatib, O., Kumar, V. Eds. (Springer, Heidelberg, Germany, 2016), vol. 109, pp. 405420.CrossRefGoogle Scholar
Mac Murray, B.C., An, X., Robinson, S.S., Van Meerbeek, I.M., O’Brien, K.W., Zhao, H., Shepherd, R.F., Adv. Mater. 27, 6334 (2015).CrossRef
Argiolas, A., Mac Murray, B.C., Van Meerbeek, I., Whitehead, J., Sinibaldi, E., Mazzolai, B., Shepherd, R.F., Soft Robot. 3, 101 (2016).CrossRef
Van Meerbeek, I.M., Mac Murray, B.C., Kim, J.W., Robinson, S.S., Zou, P.X., Silberstein, M.N., Shepherd, R.F., Adv. Mater. 28, 2801 (2016).CrossRef
Bicchi, A., Tonietti, G., IEEE Robot. Autom. Mag. 11, 22 (2004).CrossRef
Brown, E., Rodenberg, N., Amend, J., Mozeika, A., Steltz, E., Zakin, M.R., Lipson, H., Jaeger, H.M., Proc. Natl. Acad. Sci. U.S.A. 107, 18809 (2010).CrossRef
Bekey, G.A., Autonomous Robots: From Biological Inspiration to Implementation and Control (MIT Press, Cambridge, MA, 2005), pp. 125.Google Scholar
Lu, N., Kim, D.-H., Soft Robot. 1, 53 (2014).CrossRef
Bauer, S., Bauer-Gogonea, S., Graz, I., Kaltenbrunner, M., Keplinger, C., Schwödiauer, R., Adv. Mater. 26, 149 (2014).CrossRef
Park, Y.L., Chen, B.R., Wood, R.J., IEEE Sens. J. 12, 2711 (2012).CrossRef
Hammond, F.L., Menguc, Y., Wood, R.J., Proc. IEEE/RSJ Int. Conf. Intelligent Robots Systems (2014) pp. 40004007.
Yeo, J.C., Yap, H.K., Xi, W., Wang, Z., Yeow, C.-H., Lim, C.T., Adv. Mater. Technol. 1, 1600018 (2016).CrossRef
Muth, J.T., Vogt, D.M., Truby, R.L., Menguc, Y., Kolesky, D.B., Wood, R.J., Lewis, J.A., Adv. Mater. 26, 6307 (2014).CrossRef
Majidi, C., Kramer, R., Wood, R.J., Smart Mater. Struct. 20, 105017 (2011).CrossRef
Vogt, D.M., Park, Y.-L., Wood, R.J., IEEE Sens. J. 13, 4056 (2013).CrossRef
Menguc, Y., Park, Y.-L., Pei, H., Vogt, D., Aubin, P.M., Winchell, E., Fluke, L., Stirling, L., Wood, R.J., Walsh, C.J., Int. J. Robot. Res. 33, 1748 (2014).CrossRef
Menguc, Y., Park, Y.-L., Martinez-Villalpando, E., Aubin, P., Zisook, M., Stirling, L., Wood, R.J., Walsh, C.J., Proc. IEEE Int. Conf. Robotics Automation (2013), pp. 52895296.
Lee, C., Jug, L., Meng, E., Appl. Phys. Lett. 102, 183511 (2013).CrossRef
Xu, F., Zhu, Y., Adv. Mater. 24, 5117 (2012).CrossRef
Manandhar, P., Calvert, P.D., Buck, J.R., IEEE Sens. J. 12, 2052 (2012).CrossRef
Pan, L., Chortos, A., Yu, G., Wang, Y., Isaacson, S., Allen, R., Dauskardt, R., Bao, Z., Nat. Commun. 5, 3002 (2014).
Lu, N., Lu, C., Yang, S., Rogers, J., Adv. Funct. Mater. 22, 4044 (2012).CrossRef
Lipomi, D.J., Vosgueritchian, M., Tee, B.C-K., Hellstrom, S.L., Lee, J.A., Fox, C.H., Bao, Z., Nat. Nanotechnol. 6, 788 (2011).CrossRef
Frutiger, A., Muth, J.T., Vogt, D.M., Menguc, Y., Campo, A., Valentine, A.D., Walsh, C.J., Lewis, J.A., Adv. Mater. 27, 2440 (2015).CrossRef
Yao, S., Zhu, Y., Nanoscale 6, 2345 (2014).CrossRef
Hu, W., Niu, X., Zhao, R., Pei, Q., Appl. Phys. Lett. 102, 83303 (2013).CrossRef
Viry, L., Levi, A., Massimo, M., Mondini, A., Mattoli, V., Mazzolai, B., Beccai, L., Adv. Mater. 26, 2659 (2014).CrossRef
Roberts, P., Damian, D.D., Shan, W., Lu, T., Majidi, C., Proc. IEEE Int. Conf. Robotics Automation (2013) pp. 35293534.
Lucarotti, C., Totaro, M., Sadeghi, A., Mazzolai, B., Beccai, L., Sci. Rep. 5, 8788 (2015).CrossRef
Puangmali, P., Althoefer, K., Seneviratne, L.D., Murphy, D., Dasgupta, P., IEEE Sens. J. 8, 371 (2008).CrossRef
Robinson, S.S., O’Brien, K.W., Zhao, H., Peele, B.N., Larson, C.M., Mac Murray, B.C., Van Meerbeek, I.M., Dunham, S.N., Shepherd, R.F., Extreme Mech. Lett. 5, 47 (2015).CrossRef
Larson, C., Peele, B., Li, S., Robinson, S., Totaro, M., Beccai, L., Mazzolai, B., Shepherd, R., Science 351, 1071 (2016).CrossRef
Li, S., Peele, B.N., Larson, C.M., Zhao, H., Shepherd, R.F., Adv. Mater. 28, 9770 (2016).CrossRefPubMed
Ramsden, E., Hall Effect Sensors, Theory and Application, 2nd ed. (Newnes, Burlington, MA, 2006), pp. 19.Google Scholar
Ozel, S., Keskin, N.A., Khea, D., Onal, C.D., Sens. Actuators A Phys. 236, 349 (2015).CrossRef
Ozel, S., Skorina, E.H., Luo, M., Tao, W., Chen, F., Pan, Y., Onal, C.D., “A Composite Soft Bending Actuation Module with Integrated Curvature Sensing,” presented at the 32nd IEEE International Conference on Robotics and Automation, Stockholm, Sweden, May 16–21, 2016.
Jentoft, L., Howe, R., “Compliant Fingers Make Simple Sensors Smart,” Proc. 2010 IFToMM/ASME Workshop Underactuated Grasping (UG2010) (Montreal, Canada, 2010).Google Scholar
Luo, M., Pan, Y., Skorina, E.H., Tao, W., Chen, F., Ozel, S., Onal, C.D., Bioinspir. Biomim. 10, 55001 (2015).CrossRef
Ryu, S.C., Quek, Z.F., Renaud, P., Black, R.J., Daniel, B.L., Cutkosky, M.R., Proc. IEEE Int. Conf. Robotics Automation (2012), pp. 15891594.
Cianchetti, M., Renda, F., Licofonte, A., Laschi, C., “Sensorization of Continuum Soft Robots for Reconstructing Their Spatial Configuration,” presented at the IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Rome, Italy, June 24–27, 2012.
Dobrzynski, M.K., Halasz, I., Pericet-Camara, R., Floreano, D., Proc. IEEE/RSJ Int. Conf. Intelligent Robots Systems (2012), pp. 48104815.
Yi, J., Zhu, X., Shen, L., Sun, B., Jiang, L., in Life System Modeling and Intelligent Computing, Springer Series in Communications in Computer and Information Science, Li, K., Li, X., Ma, S., Irwin, G., Eds. (Springer, Berlin, Germany, 2010), vol. 97, pp. 2531.CrossRefGoogle Scholar
Polygerinos, P., Ataollahi, A., Schaeffter, T., Razavi, R., Seneviratne, L.D., Althoefer, K., IEEE Trans. Biomed. Eng. 58, 721 (2011).CrossRef
Jentoft, L.P., Dollar, A.M., Wagner, C.R., Howe, R.D., Sensors 14, 3861 (2014).CrossRefPubMed
Jiang, L., Low, K., Costa, J.M., Black, R.J., Park, Y.-L., Proc. IEEE/RSJ Int. Conf. Intelligent Robots Systems (2015), pp. 17631768.
Righini, G.C., Tajani, A., Cutolo, A., in An Introduction to Optoelectronic Sensors, Righini, G.C., Tajani, A., Cutolo, A., Eds. (World Scientific, Singapore, 2009), pp. 133.CrossRefGoogle Scholar
Zhao, H., Huang, R., Shepherd, R.F., Proc. IEEE Int. Conf. Robotics Automation (2016), pp. 40084013.
Zhao, H., Jalving, J., Huang, R., Knepper, R., Ruina, A., Shepherd, R., IEEE Robot. Autom. Mag. 23, 55 (2016).CrossRef
Wehner, M., Quinlivan, B., Aubin, P.M., Martinez-Villalpando, E., Baumann, M., Stirling, L., Holt, K., Wood, R., Walsh, C., Proc. IEEE Int. Conf. Robotics Automation (2013), pp. 33623369.
Asbeck, A.T., Schmidt, K., Walsh, C.J., Robot. Auton. Syst. 73, 102 (2015).CrossRef
Park, E., Mehandru, N., Lievano Beltran, T., Kraus, E., Holland, D., Polygerinos, P., Vasilyev, N.V., Walsh, C.J., J. Med. Device 8, 20909 (2014).CrossRef
Zhao, H., O’Brien, K., Li, S., Shepherd, R.F., Sci. Robot. 1, eaai7529 (2016).CrossRef
Ramuz, M., Tee, B.C.-K., Tok, J.B.-H., Bao, Z., Adv. Mater. 24, 3223 (2012).CrossRef
To, C., Hellebrekers, T.L., Park, Y.-L., Proc. IEEE/RSJ Int. Conf. Intelligent Robots Systems (2015), pp. 58985903.

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 153
Total number of PDF views: 1301 *
View data table for this chart

* Views captured on Cambridge Core between 02nd February 2017 - 23rd January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-2rmft Total loading time: 0.45 Render date: 2021-01-23T15:27:30.106Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Flexible and stretchable sensors for fluidic elastomer actuated soft robots
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Flexible and stretchable sensors for fluidic elastomer actuated soft robots
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Flexible and stretchable sensors for fluidic elastomer actuated soft robots
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *