Skip to main content Accessibility help
×
Home

Cancrinite–vishnevite solid solution from Cinder Lake (Manitoba, Canada): crystal chemistry and implications for alkaline igneous rocks

  • Tânia Martins (a1), Ryan Kressall (a2), Luca Medici (a3) and Anton R. Chakhmouradian (a4)

Abstract

This paper presents a microbeam (electron microprobe, Raman spectroscopic and X-ray microdiffraction) study of cancrinite-group minerals of relevance to alkaline igneous rocks. A solid solution is known to exist between cancrinite and vishnevite with the principal substitutions being CO3 2- by SO4 2- and Ca for Na. In the present study, several intermediate members of the cancrinite–vishnevite series from a syenitic intrusion at Cinder Lake (Manitoba, Canada), were used to examine how chemical variations in this series affect their spectroscopic and structural characteristics. The Cinder Lake samples deviate from the ideal cancrinite-vishnevite binary owing to the presence of cation vacancies. The only substituent elements detectable by electron microprobe are K, Sr and Fe (0.03-0.70, 0-0.85 and 0-0.45 wt.% respective oxides). The following Raman bands are present in the spectra of these minerals: ∼631 cm-1 and ∼984-986 cm-1 [SO4 2- vibration modes]; ∼720-774 cm -1 and ∼1045-1060 cm -1 [CO3 2- vibration modes]; and ∼3540 cm -1 and 3591 cm -1 [H2O vibration modes]. Our study shows a clear relationship between the chemical composition and Raman characteristics of intermediate members of the cancrinite-vishnevite series, especially with regard to stretching modes of the CO3 2- and SO4 2- anions. From cancrinite-poor (Ccn6 5) to cancrinite-dominant (Ccn91 3) compositions, the SO4 2- vibration modes disappear from the Raman spectrum, giving way to CO3 2- modes. X-ray microdiffraction results show a decrease in unit-cell parameters towards cancrinite-dominant compositions: a = 12.664 (1) Å, c = 5.173(1) Å for vishnevite (Ccn22); a = 12.613 (1) Å, c = 5.132(1) Å for cancrinite (Ccn71). Our results demonstrate that Raman spectroscopy and X-ray microdiffraction are effective for in situ identification of microscopic grains of cancrinite-vishnevite where other methods (e.g. infrared spectroscopy) are inapplicable. The petrogenetic implications of cancrinite-vishnevite relations for tracing early- to late-stage evolution of alkaline magmas are discussed.

Copyright

Corresponding author

References

Hide All
Barney, G.S. (1976) Fixation of radioactive waste by hydrothermal reaction with clays. Advances in Chemistry, 153, 108125.
Baudouin, C. and Parat, F. (2015) Role of volatiles (S, Cl, H2O) and silica activity on the crystallization of haüyne and nosean in phonolitic magmas (Eifel, Germany and Saghro, Morocco). American Mineralogist, 100, 23082322.
Bedford, C.M. (1989) The Mineralogy, Geochemistry, and Petrogenesis of the Grønnedal-Íka Alkaline Igneous Complex, south-west Greenland. PhD Theses, Durham University, UK.
Cordier, C., Clémont, J.P., Caroff, M., Hémond C., Blais, S. Cotten, J., Bollinger, C. Launeau, P. and Guille, G. (2005) Petrogenesis of coarse-grained intrusives from Tahiti Nui and Raiatea (Society Islands, French Polynesia). Journal of Petrology, 46, 22812312.
Corkery, M.T., Cameron, H.D.M., Lin, S., Skulski, T., Whalen, J.B. and Stern, R.A. (2000) Geological investigations in the Knee Lake belt (parts of NTS 53L); Pp. 129136 in: Report of Activities 2000. Manitoba Industry, Trade and Mines, Manitoba Geological Survey, Canada.
Coulson, I.M., Russell, J.K. and Dipple, G.M. (1999) Origins of the Zippa Mountain pluton: a Late Triassic, arc-derived, ultrapotassic magma from the Canadian Cordillera. Canadian Journal of Earth Sciences, 36, 14151434.
Chakhmouradian, A.R., Böhm, C.O., Kressall, R.D. and Lenton, P.G. (2008) Evaluation of the age, extent and composition of the Cinder Lake alkaline intrusive complex, Knee Lake area, Manitoba (part of NTS 53L15). Pp. 109120 in: Report of Activities 2008. Manitoba Science, Technology, Energy and Mines, Manitoba Geological Survey, Canada.
Chukanov, N.V., Pekov. I.V., Olysych, L.V., Massa, W., Yakubovich, O.V., Zadov, A.E., Rastsvetaeva, R.K. and Vigasi, M.F. (2010) Kyanoxalite, a new cancrinite-group mineral species with extraframework oxalate anion from the Lovozero alkaline pluton, Kola Peninsula. Geology of Ore Deposits, 52, 778790.
Chukanov, N.V., Pekov, I.V., Olysych, L.V., Zubkova, N.V. and Vigasina, M.F. (2011) Crystal chemistry of cancrinite-group minerals with an AB-type framework: a review and new data. II. IR Spectroscopy and its crystal chemical implications. The Canadian Mineralogist, 49, 11511164.
Dawson, J.B., Smith, J.V. and Steele, I.M. (1995) Petrology and mineral chemistry of plutonic igneous xenoliths from the carbonatite volcano, Oldoinyo Lengai, Tanzania. Journal of Petrology, 36, 797826.
Deer, W.A., Howie, R.A. and Zussman, J. (1992) An Introduction to The Rock Forming Minerals. 2nd Ed., Pearson Education Limited, Harlow, UK.
Della Ventura, G. and Bellatreccia, F. (2004) The channel constituents of cancrinite-group minerals. Pp. 7576 in: Proceedings Micro- and Mesoporous Mineral Phases. Accademia Nazionale dei Lincei, Rome, Italy.
Della Ventura, G., Bellatreccia, F. and Bonaccorsi, E. (2005) CO2 in minerals of the cancrinite-sodalite group: pitiglianoite. European Journal of Mineralogy, 17, 847851.
Della Ventura, G., Bellatreccia, F., Parodi, G.C., Cámara, F. and Piccinini, M. (2007) Single-crystal FTIR and X-ray study of vishnevite, ideally [Na6(SO4)] [Na2(H2O)2][Si6Al6O24]. American Mineralogist, 92, 713721.
Della Ventura, G.D., Bellatreccia, F. and Piccinini, M. (2008) Channel CO2 in feldspathoids: new data and new perspectives. Rendiconti Lincei, 19, 141159.
Della Ventura, G., Gatta, D., Redhammer, G., Bellatreccia, F., Loose, A. and Parodi, G.C. (2009) Single-crystal polarized FTIR spectroscopy and neutron diffraction refinement of cancrinite. Physics and Chemistry of Minerals, 36, 193206.
Dumańska-Słowik, M., Pieczka, A. Heflik, W. and Sikorska, M. (2016) Cancrinite from nepheline (mariupolite) of the Oktiabrski massif, SE Ukraine, and its growth history. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 157, 211219.
Gatta, G.D. and Lee, Y. (2008) Pressure-induced structural evolution and elastic behaviour of Na6Cs2Ga6Ge6O24·Ge(OH)6 variant of cancrinite: a synchrotron powder diffraction study. Microporous and Mesoporous Materials, 116, 5158.
Gatta, G.D. and Lotti, P. (2016) Cancrinite-group minerals: crystal-chemical description and properties under non-ambient conditions – a review. American Mineralogist, 101, 253265.
Gatta, G.D., Lotti, P., Kahlenberg, V. and Haefeker, U. (2012) The low-temperature behaviour of cancrinite: an in situ single-crystal X-ray diffraction study. Mineralogical Magazine, 76, 933948.
Gatta, G.D., Comboni, D., Alvaro, M., Lotti, P., Cámara, F. and Domeneghetti, M.C. (2014) Thermoelastic behavior and dehydration process of cancrinite. Physics and Chemistry of Minerals, 41, 373386.
Gilbert, H.P. (1985) Geology of Knee-Lake-Gods Lake area. Manitoba Energy and Mines, Geological Services, Geological Report, GR83–1B. Manitoba, Canada.
Grundy, H.D. and Hassan, I. (1982) The crystal structure of carbonate-rich cancrinite. The Canadian Mineralogist. 20, 239251.
Gunasekaran, S., Anbalagan, G. and Pandi, S. (2006) Raman and infrared spectra of carbonates of calcite structure. Journal ofRaman Spectroscopy, 37, 892899.
Hassan, I. (1996a) Thermal expansion of cancrinite. Mineralogical Magazine, 60, 949956.
Hassan, I. (1996b) The thermal behavior of cancrinite. The Canadian Mineralogist, 34, 893900.
Hassan, I. and Buseck, P.R. (1992) The origin of the superstructure and modulations in cancrinite. The Canadian Mineralogist, 30, 4959.
Hassan, I. and Grundy, H.D. (1984) The character of the cancrinite-vishnevite solid-solution series. The Canadian Mineralogist, 22, 333340.
Hassan, I. and Grundy, H.D. (1991) The crystal structure of basic cancrinite, ideally Na8[Al6Si6O24] (OH)2·3H2O. The Canadian Mineralogist, 29, 377383.
Hassan, I., Antao, S.M. and Parise, J.B. (2006) Cancrinite: crystal structure, phase transitions, and dehydration behavior with temperature. American Mineralogist, 91, 11171124.
Holland, T.J.B. and Redfern, S.A.T. (1997) UNITCELL: a nonlinear least-squares program for cell-parameter refinement and implementing regression and deletion diagnostics. Journal of Applied Crystallography, 30, 84.
Horváth, L. and Gault, R.A. (1990) The mineralogy of Mont Saint-Hilaire, Quebec. Mineralogical Record, 21, 281359.
Hubregtse, J.J.M.W. (1985) Geology of the Oxford Lake–Carrot River area. Manitoba Energy and Mines, Geological Services, Geological Report, GR83–1A. Manitoba, Canada.
Kressall, R. (2012) The Petrology, Mineralogy and Geochemistry of the Cinder Lake Alkaline Intrusive Complex, Eastern Manitoba. MSc thesis, University of Manitoba, Canada.
Lin, S., Davis, D.W., Rotenberg, E., Corkery, M.T. and Bailes, A.H. (2006) Geological evolution of the northwestern Superior Province: clues from geology, kinematics, and geochronology in the Gods Lake Narrows area, Oxford–Stull terrane, Manitoba. Canadian Journal of Earth Sciences, 43, 749765.
Lotti, P., Gatta, G.D., Rotiroti, N. and Cámara, F. (2012) High-pressure study of a natural cancrinite. American Mineralogist, 97, 872882.
Lotti, P., Gatta, G.D., Merlini, M. and Hanfland, M. (2014a) High-pressure behavior of davyne [CAN-topology]: An in situ single-crystal synchrotron diffraction study. Microporous and Mesoporous Materials, 198, 203214.
Lotti, P., Gatta, G.D., Rotiroti, N., Cámara, F. and Harlow, G.E. (2014b) The high-pressure behavior of balliranoite: a cancrinite group mineral. Zeitschrift für Kristallogrophie, 229, 6376.
Melluso, L., Srivastava, R.K., Guarino, V., Zanetti, A. and Sinha, A.K. (2010) Mineral compositions and petrogenetic evolution of the ultramafic-alkalinecarbonatitic complex of Sung Valley, Northeastern India. The Canadian Mineralogist, 48, 205229.
Olysych, L.V., Pekov, I.V. and Agakhanov, A.A. (2008) Chemistry of cancrinite-group minerals from the Khibiny-Lovozero alkaline complex, Kola Peninsula, Russia. Pp. 9194: Minerals as Advanced Materials Springer Berlin Heidelberg, Germany.
Pekov, I.V., Olysych, L.V., Chukanov, N.V., Zubkova, N. V., Pushcharovsky, D.Y., Van, V.K., Giester, G. and Tillmanns, E. (2011) Crystal chemistry of cancrinitegroup minerals with an AB-type framework: a review and new data. I. Chemical and structural variations. The Canadian Mineralogist, 49, 11291150.
Phoenix, R. and Nuffield, E.W. (1949) Cancrinite from Blue Mountain, Ontario. American Mineralogist, 34, 452455.
Pouchou, J.L. and Pichoir, F. (1985) “PAP” (φ-ρ-Z) correction procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis (Armstrong, J.T., editor). San Francisco Press, San Francisco, USA.
Rastsvetaeva, I.V., Pekov, I.V., Chukanov, N.V., Rozenberg, K.A. and Olysych, L.V. (2007) Crystal structures of low-symmetry cancrinite and cancrisilite varieties. Crystallography Reports, 52, 811818.
Reshetnyak, N.B., Sosedko, T.A. and Tret’yakova, L.I. (1988) Combination light scattering in minerals. Mineralogicheskii Zhurnal, 10, 6973.
Stott, G.M., Corkery, M.T., Percival, J.A., Simard, M. and Goutier, J. (2010) A revised terrane subdivision of the Superior Province. Ontario Geological Survey, Open File Report, 6260, 20-1–20-10. Ontario, Canada.
Wright, J.F. (1932) Oxford House area, Manitoba. Canada Department of Mines, Geological Survey Summary Report, 1931 (C), 1C25C.

Keywords

Related content

Powered by UNSILO
Type Description Title
EXCEL
Supplementary materials

Martins et al. supplementary material
Supplementary Data

 Excel (162 KB)
162 KB

Cancrinite–vishnevite solid solution from Cinder Lake (Manitoba, Canada): crystal chemistry and implications for alkaline igneous rocks

  • Tânia Martins (a1), Ryan Kressall (a2), Luca Medici (a3) and Anton R. Chakhmouradian (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.