Skip to main content Accessibility help
×
Home

New minerals with a modular structure derived from hatrurite from the pyrometamorphic Hatrurim Complex. Part II. Zadovite, BaCa6[(SiO4)(PO4)](PO4)2F and aradite, BaCa6[(SiO4)(VO4)](VO4)2F, from paralavas of the Hatrurim Basin, Negev Desert, Israel

Published online by Cambridge University Press:  02 January 2018


E. V. Galuskin
Affiliation:
Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
F. Gfeller
Affiliation:
Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
I. O. Galuskina
Affiliation:
Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
A. Pakhomova
Affiliation:
Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
T. Armbruster
Affiliation:
Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
Y. Vapnik
Affiliation:
Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel
R. Włodyka
Affiliation:
Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
P. Dzierżanowski
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, Warsaw University, al. Żwirki i Wigury 93, 02-089 Warsaw, Poland
M. Murashko
Affiliation:
Saint Petersburg State University, Faculty of Geology, 7-9 Universitetskaya nab., St Petersburg, 199034, Russia
Corresponding
E-mail address:

Abstract

Zadovite, BaCa6[(SiO4)(PO4)](PO4)2F (R3m, a = 7.0966(1) Å, c = 25.7284(3), V = 1122.13(3) Å3, Z = 3) and aradite, BaCa6[(SiO4)(VO4)] (VO4)2F (R3m, a = 7.1300(1), c = 26.2033(9) Å, V = 1153.63(6) Å3, Z = 3) are two new mineral species of a novel modular structure type related closely to the structure of nabimusaite, KCa12(SiO4)4(SO4)2O2F. Both minerals occur in paralavas enclosed in pyrometamorphic rocks of the Hatrurim Complex, Negev desert, Israel. Zadovite and aradite are colourless, transparent with a white streak, have a vitreous lustre and an uneven fracture. Both minerals are uniaxial (–) with refractive indices (589 nm) ω = 1.711(2), ε = 1.708(2) (zadovite) and ω = 1.784(3), ε = 1.780(3) (aradite). The zadovite structure type comprises two tetrahedral sites, which may host a broad compositional range of atoms such as Si, P, V and S. Results of electron microprobe analyses show a correlation between excess Si4+ and S6+ contents, suggesting the substitution scheme 2(P,V)5+ = Si4+ + S6+ at the tetrahedral sites. This points to the possibility of new minerals isostructural with zadovite with end-member formulae BaCa6(SiO4)2[(PO4)(SO4)]F, BaCa6(SiO4)2[(VO4)(SO4)]F, BaCa6[(SiO4)1.5(SO4)0.5](PO4)2F and BaCa6[(SiO4)1.5(SO4)0.5](VO4)2F. The Raman spectra of aradite and zadovite reflect the varying PO4 (e.g. change of band intensity at ∼1031 cm–1) and VO4 contents (e.g. change of band intensity at ∼835 cm–1). The presence of SO4 leads to an additional Raman band at ∼997 cm–1. The structure of zadovite-series minerals belonging to the nabimusaite group is characterized by a 1:1 alternation of antiperovskite-like {[FCa6](TO4)2}4+ modules and Ba(TO4)2– 4 modules.


Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below.

References

Bentor, YK. (editor) (1960) Lexique Stratigraphique International, Asie. Volume III, Section 10.2., Israel. Centre National de la Research Scientifique, Paris.Google Scholar
Britvin, S.N., Vapnik, Y, Polekhovsky, YS. and Krivovichev, S.V. (2013a) Murashkoite, IMA 2012-071. CNMNC Newsletter No. 15, February 2013, page 8; Mineralogical Magazine, 11, 1—12.Google Scholar
Britvin, S.N., Murashko, M, Vapnik, Y, Polekhovsky, Y S. and Krivovichev, S.V (20136) Negevite, IMA 2013-104. CNMNC Newsletter No. 19, February 2014, page 166. Mineralogical Magazine, 78, 165170.Google Scholar
Britvin, S.N., Murashko, M., Vapnik, Y, Polekhovsky, Y S. and Krivovichev, S.V (2013c) Halamishite, IMA 2013-105. CNMNC Newsletter No. 19, February 2014, page 166; Mineralogical Magazine, 78, 165170.Google Scholar
Britvin, S.N., Murashko, M., Vapnik, Y, Polekhovsky, Y S. and Krivovichev, S.V (2013d) Transjordanite, IMA 2013-106. CNMNC Newsletter No. 19, February 2014, page 166; Mineralogical Magazine, 78, 165170.Google Scholar
Britvin, S.N., Murashko, M., Vapnik, Y, Polekhovsky, Y S. and Krivovichev, S.V (2013e) Zuktamrurite, IMA 2013-107. CNMNC Newsletter No. 19, February 2014, page 166; Mineralogical Magazine, 78, 165170.Google Scholar
Comodi, L, Liu, Y, Stoppa, F. and Woolley, A.R. (1999) A multi-method analysis of Si-, S-and REE-rich apatite from a new find of kalsilite-bearing leucitite (Abruzzi, Italy). Mineralogical Magazine, 63, 661672.CrossRefGoogle Scholar
Dickens, B. and Brown, W.E. (1971) The crystal structure of Ca5(PO4)2SiO4 (silico-carnotite). Tschermaks Mineralogische und Petrographische Mitteilungen, 16, 127.CrossRefGoogle Scholar
Fayos, J., Glasser, F.P., Howie, R.A., Lachowski, E. and Perez-Mendez, M. (1985) Structure of dodecacalcium potassium fluoride dioxide terasilicate bis (sulphate), KF.2[Ca6(SO4)(SiO4)2O]: a fluorine-containing phase encountered in cement clinker production process. Ada Crystallographica, C41, 814816.Google Scholar
Ferraris, G., Makovicky, E. and Merlino, S. (2008) Crystallography of Modular Materials. Oxford University Press, New York.CrossRefGoogle Scholar
Frost, R.L., Weier, M.L. and Stuart, Ml (2007) A vibrational spectroscopic study of perhamite, an unusual silico-phosphate. Spectrochimica Ada Part A: Molecular and Biomolecular Spectroscopy, 61, 604610.CrossRefGoogle Scholar
Frost, R.L., Palmer, S.J., Cejka, I, Sejkora, I, Plasil, I, Bahfennea, S. and Keeffea, E.C.A (2011) Raman spectroscopic study of the different vanadate groups in solid-state compounds-model case:mineral phases vesignieite [BaCu3(VO4)2(OH)2] and volborthite [Cu3V2O7(OH)2-2H2O]. Journal of Raman Spectroscopy, 42, 17011710.CrossRefGoogle Scholar
Galuskin, E.V, Galuskina, I.O., Kusz, J. Armbruster, T., Marzec, K.M., Dzierzanowski, P. and Murashko, M. (2014) Vapnikite Ca3UO6-a new double-perovskite mineral from pyrometamorphic larnite rocks of the Jabel Harmun, Palestinian Autonomy, Israel. MineralogicalMagazine, 78, 571581.Google Scholar
Galuskin, E.V, Gfeller, F, Armbruster, T., Galuskina, I. O.,Vapnik, Y, Dulski, M, Murashko, M, Dzierzanowski, P., Sharygin, YV, Krivovichev, S.Y and Wirth, R. (2015a) Mayenite supergroup, Part III: Fluormayenite, Ca12Alj4032 [Q4F2], and fluorkyuy-genite, Cai2Ali4O32[(H2O)4F2], two new minerals of mayenite supergroup from pyrometamorphic rock of Hatrurim Complex. European Journal Mineralogy, 27, 123126.CrossRefGoogle Scholar
Galuskin, E.Y, Gfeller, F, Armbruster, T., Galuskina, I. O., Vapnik, Ye., Murashko, M., Wodyka, R. and Dzierzanowski, P. (2015b) New minerals with modular structure derived from hatrurite from the pyrometamorphic Hatrurim Complex, Part I: Nabimusaite, KCa12(SiO4)4(SO4)2O2F, from larnite rock of the Jabel Harmun, Palestinian Autonomy, Israel. Mineralogical Magazine, 79, 10611072.CrossRefGoogle Scholar
Galuskina, I.O., Vapnik, Y, Prusik, K., Dzierzanowski, P., Murashko, M. and Galuskin, E.Y (2013) Gurimite, IMA 2013-032. CNMNC Newsletter No. 16, August 2013, page 2708. Mineralogical Magazine, 11, 26952709.Google Scholar
Galuskina, I.O., Galuskin, E.Y, Pakhomova, A.S., Widmer, R., Armbruster, T., Lazic, B., Grew, E.S., Vapnik, Y, Dzierzanowski, P. and Murashko, M. (2014a) Khesinite, IMA 2014-033. CNMNC Newsletter No. 21, August 2014, page 802; Mineralogical Magazine, 78, 797804.Google Scholar
Galuskina, I.O., Vapnik, Y, Lazic, B., Armbruster, T., Murashko, M. and Galuskin, E.V (2014b) Harmunite CaFe2O4—a new mineral from the Jabel Harmun, West Bank, Palestinian Autonomy, Israel. American Mineralogist, 99, 965975.CrossRefGoogle Scholar
Galuskina, I.O., Vapnik, Y, Lazic, B., Armbruster, T., Murashko, M. and Galuskin, E.V (2014c) Dzierzanowskite, IMA 2014-032. CNMNC Newsletter No. 21, August 2014, page 802; Mineralogical Magazine, 78, 797804.Google Scholar
Geller, YI., Burg, A., Halicz, L. and Kolodny, Y (2012) System closure during the combustion metamorphic “Mottled Zone” event, Israel. Chemical Geology, 334, 2536.CrossRefGoogle Scholar
Gfeller, K, Widmer, R., Kriiger, B., Galuskin, E.V, Galuskina, I.O. and Armbruster, T. (2015) The crystal structure of flamite and its relation to Ca2Si04polymorphs and nagelschmidtite. European Journal of Mineralogy, 21, DOI: 10.1127/ejm/2015/0027-2476.CrossRefGoogle Scholar
Gross, S. (1977) The mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel Bulletin, 70, 180.Google Scholar
Irran, E., Tillmanns, E. and Hentschel, G. (1997) Ternesite, Ca5(SiO4)2SO4, a new mineral from the Ettringer Bellerberg/Eifel, Germany. Mineralogy and Petrology, 60, 121132.CrossRefGoogle Scholar
Jeffery, J.W (1952) The crystal structure of tricalcium silicate. Ada Crystallographica, 5, 2635.CrossRefGoogle Scholar
Matthews, A. and Gross, S. (1980) Petrologic evolution of the Mottled Zone (Hatrurim) meta-morphic complex of Israel. Israel Journal of Earth Sciences, 29, 93106.Google Scholar
Mumme, W, Hill, R., Bushnell-Wye, G. and Segnit, E. (1995) Rietveld crystal structure refinements, crystal chemistry and calculated powder diffraction data for the polymorphs of dicalcium silicate and related phases. Neues Jahrbuch fur Mineralogie, Abhandlungen, 169, 3568.Google Scholar
Murashko, M.N., Chukanov, N.V, Mukhanova, A.A., Vapnik, E., Britvin, S.N., Krivovichev, S.V, Polekhovsky, YS. and Ivakin, YD. (2010) Barioferrite BaFeiJO19-a new magnetoplumbi-tegroup mineral from Hatrurim Formation, Israel. Zapiski Rossiyskogo Mineralogicheskogo Obshchestva, 139, 2231.Google Scholar
Novikov, I., Vapnik, Y andSafonova, I. (2013) Mud volcano origin of the Mottled Zone, South Levant. Geoscience Frontiers, 4, 597619.CrossRefGoogle Scholar
Saalfeld, H. and Klaska, K. (1981) The crystal structure of 6Ca2SiO4-lCa3(PO4). Zeitschrift fur Kristallographie, 155, 6573.Google Scholar
Schindler, M., Hawthorne, F.C. and Baur, WH. (2000) Crystal chemical aspects of vanadium: polyhedral geometries, characteristic bond valences, and poly-merization of (VOn) polyhedra. Chemistry Materials, 12, 12481259.CrossRefGoogle Scholar
Seryotkin, YV, Sokol, E.V and Kokh, S. (2012) Natural pseudowollastonite: crystal structure, associated minerals, and geological context. Lithos, 134—135, 7590.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Ada Crystallographica, 150, 751767.Google Scholar
Sharygin, W, Lazic, B., Armbruster, T.M., Murashko, M.N., Wirth, R., Galuskina, I.O., Galuskin, E.V, Vapnik, Y, Britvin, S.N. and Logvinova, A.M. (2013) Shulamitite Ca3TiFe3+A108-A new per-ovskite-related mineral from Hatrurim Basin, Israel. European Journal of Mineralogy, 25, 97111.CrossRefGoogle Scholar
Sokol, E.Y, Novikov, I.S., Vapnik, Y andSharygin, YV (2007) Gas fire from mud volcanoes as a trigger for the appearance of high-temperature pyrometamorphic rocks of the Hatrurim Formation (Dead Sea area). Doklady Earth Sciences, 413A, 474480.CrossRefGoogle Scholar
Sokol, E.Y, Novikov, I.S., Zateeva, S.N., Sharygin, YY and Vapnik, Y (2008) Pyrometamorphic rocks of the spurrite—merwinite facies as indicators of hydrocarbon discharge zones (the Hatrurim Formation, Israel). Doklady Earth Sciences, 420, 608614.CrossRefGoogle Scholar
Sokol, E.Y, Seryotkin, YV, Kokh, S.N., Vapnik, Y, Nigmatulina, E.N., Goryainov, S.Y, Belogub, E.V and Sharygin, YV (2014) Flamite, IMA 2013-122. CNMNC Newsletter No. 20, June 2014, page 550. MineralogicalMagazine, 78, 549558.Google Scholar
Sokolova, E.Y, Yamnova, N.A., Egorov-Tismenko, YK. and Khomyakov, A.P. (1984) The crystal structure of a new sodium-calcium-barium phosphate of Na, Ca and Ba (Na5Ca)CaBa(PO4)6F3. Doklady Akademii Nauk SSSR, 274, 7883.Google Scholar
Vapnik, Y, Sokol, E., Murashko, M. and Sharygin, Y (2006) The enigma of Hatrurim. Mineralogical Almanac, 10, 6977.Google Scholar

Galuskin et al. supplementary material

Supplementary Table 1

[Opens in a new window]
File 78 KB

Galuskin et al. supplementary material

Supplementary Table 2

[Opens in a new window]
File 74 KB

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 9 *
View data table for this chart

* Views captured on Cambridge Core between 02nd January 2018 - 1st December 2020. This data will be updated every 24 hours.

Hostname: page-component-79f79cbf67-qrxfc Total loading time: 0.364 Render date: 2020-12-01T19:25:48.146Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Tue Dec 01 2020 19:04:08 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

New minerals with a modular structure derived from hatrurite from the pyrometamorphic Hatrurim Complex. Part II. Zadovite, BaCa6[(SiO4)(PO4)](PO4)2F and aradite, BaCa6[(SiO4)(VO4)](VO4)2F, from paralavas of the Hatrurim Basin, Negev Desert, Israel
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

New minerals with a modular structure derived from hatrurite from the pyrometamorphic Hatrurim Complex. Part II. Zadovite, BaCa6[(SiO4)(PO4)](PO4)2F and aradite, BaCa6[(SiO4)(VO4)](VO4)2F, from paralavas of the Hatrurim Basin, Negev Desert, Israel
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

New minerals with a modular structure derived from hatrurite from the pyrometamorphic Hatrurim Complex. Part II. Zadovite, BaCa6[(SiO4)(PO4)](PO4)2F and aradite, BaCa6[(SiO4)(VO4)](VO4)2F, from paralavas of the Hatrurim Basin, Negev Desert, Israel
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *