Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-22T16:22:41.464Z Has data issue: false hasContentIssue false

Material Contrast of Scanning Electron and Ion Microscope Images of Metals

Published online by Cambridge University Press:  14 March 2018

T. Suzuki
Affiliation:
JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 Japan
M. Kudo
Affiliation:
JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 Japan
Y. Sakai
Affiliation:
JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 Japan
T. Ichinokawa*
Affiliation:
Waseda University, Okubo, Shinjuku-ku, Tokyo Japan

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The rapid technical development of FIM (Focused Ion Beam) technology has spawned an increase in spatial resolution capability in scanning ion microscopy (SIM) technology. Furthermore, FIM has been used for preparation of thin specimens in transmission electron microscopy and micro-fabrication of electronic devices in the semiconductor industry. Recently, a scanning ion microscope with a helium field ion source has been developed. Thus, the contrast formation of emission electron images in scanning ion microscopy has been the object of study for analyzing images of materials specimens, similar to the theory behind scanning electron microscope (SEM) contrast formation. Furthermore, whether the electron emission yield γ induced by ion impact is periodic or non-periodic as a function of Z2 (the atomic number of the target) has not been well studied in the low energy region from several keV to the several tens of keV values used in SIM.

Type
Research Article
Copyright
Copyright © Microscopy Society of America 2008

References

(1) Levi-Setti, R., Scanning Electron Microscopy 1, 1 (1983).Google Scholar
(2) Ishitani, T., Tsuboi, H., Yaguchi, T., Koike, H., J. Elect. Microsc. 43, 322 (1994).Google Scholar
(3) Seliger, R.L., Kubena, R.L., Olney, R.D., Ward, J.W. and Wang, V, J. Vac. Sci. Tech. 16, 1610 (1979) ; J. Melngailis, J. Vac. Sci. Tech. B5, 469 (1987).Google Scholar
(4) Morgan, J., Notte, J., Hill, R., and Ward, B., Microscopy Today 14, 24 (2006).Google Scholar
(5) Sakai, Y., Yamada, T., Suzuki, T., Sato, T., Itoh, H. and Ichinokawa, T., Appl. Phys. Lett. 73, 611 (1998).Google Scholar
(6) Kudo, M., Sakai, Y. and Ichinokawa, T., Appl. Phys. Lett. 76, 3475 (2000).Google Scholar
(7) Suzuki, T., Endo, N., Shibata, M., Kamasaki, S. and Ichinokawa, T., J. Vac. Sci. Tech. A22, 49 (2004).Google Scholar
(8) Michaelson, H.B., J. Appl. Phys. 48, 4729 (1977).Google Scholar
(9) Hasselkamp, D., Particle Induced Emission II 123, 1-95 (Springer, Berlin, 1991)Google Scholar
(10) Hangstrum, H.D., In Electron and Ion Spectroscopy of Solids, edited by Fiermans, L., Vennik, J. and Dekeyser, Dekeyser (Plenum, New York, 1978).Google Scholar
(11) Hangstrum, H.D., Phys. Rev. 89, 244 (1953).Google Scholar
(12) Baragiola, R.A., Alonso, E.V. and Oliva-Florio, A., Phys. Rev. B 19, 121 (1979).Google Scholar
(13) Baragiola, R.A., Alonso, E.V., Ferron, J. and Oliva-Florio, A., Surf. Sci. 90, 240 (1979).Google Scholar
(14) Alonso, E.V., Baragiola, R.A., Ferron, J., Jakas, M.N. and Oliva-Florio, A., Phys. Rev. B 22, 80 (1980)Google Scholar
(15) Sternglass, E.J., Phys. Rev. 108, 1 (1957).Google Scholar
(16) Bethe, H. A., Phys. Rev. 59, 940 (1941).Google Scholar
(17) Ishitani, T., Madokoro, Y., Nakagawa, M. and Ohya, K., J Electron Microscopy 51, 207 (2002).Google Scholar
(18) Baroody, E.M., Phys. Rev. 108, 780 (1950).Google Scholar
(19) Dekker, J., Solid State Physics (Prentice-Hall, Englewood Cliffs, N.Y. 1957), Chap. 17.Google Scholar
(20) Hippler, S., Hasselkamp, D. and Scharmann, A., Nucl. Instrum. Methods, in Phys. Res. B34, 518 (1988).Google Scholar
(21) Kishinevskii, L.M., Rad. Effects 19, 23 (1973).Google Scholar
(22) Baragiola, R.A., Surf. Sci. 90, 240 (1979).Google Scholar
(23) Lörincik, J., Šroubek, Z., Eder, H.. Aumayr, F. and Winter, H., Phys. Rev. B 62, 16116 (2000).Google Scholar
(24) Barat, M. and Lichten, W. Phys. Rev. A 6, 211 (1972).CrossRefGoogle Scholar
(25) Wille, U. and Hippler, R. Phys. Rep. 132, 129 (1986).Google Scholar
(26) Yarmoff, J. A., Liu, T. D., Qiu, S. R., and Sroubeck., Z. Phys. Rev. Lett. 80, 2469 (1998).Google Scholar
(27) Lakits, G. Arnau, F. and Winter, HP. Phys. Rev. A 42, 15 (1990).Google Scholar
(28) Ferguson, M. M. and Hofer, W. O. Rad. Effects and Defects in Solids, 109, 273 (1989).Google Scholar
(29) Eder, H. Messerschmidt, W. Winter, HP. and Aumayr, F. J. Appl. Phys. 87, 8198 (2000).Google Scholar
(30) Lörincik, J. and Šroubek, Z. Nucl. Instrum. Methods Phys. Res. B 164-165, 633 (2000).Google Scholar
(31) Pauling, L. The Nature of the Chemical Bond (Cornell University Press, Ithaca, New York, 1960), Chap.3.Google Scholar