Skip to main content Accessibility help

Thinness and boundary behaviour of potentials for the heat equation

  • N. A. Watson (a1)


For (x, t) ∈ Rn+1, we put



Hide All
1.Brelot, M.. On Topologies and Boundaries in Potential Theory (Springer, 1971).
2.Deny, J.. Un théorème sur les ensembles effilés. Ann. Univ. Grenoble Sect. Sci. Math. Phys., 23 (1948), 139142.
3.Doob, J. L.. Classical Potential Theory and its Probabilistic Counterpart (Springer, 1984).
4.Evans, L. C. and Gariepy, R. F.. Wiener's criterion for the heat equation. Arch. Rational Mech. Anal., 78 (1982), 293314.
5.Hansen, W.. Fegen und Dünnheit mit Anwendungen auf die Laplace-und Wärmeleitungsgleichung. Ann. Inst. Fourier, Grenoble, 21 (1971), 79121.
6.Kaufman, R. and Wu, J.-M.. Parabolic potential theory. J. Differential Equations, 43 (1982), 204234.
7.Korányi, A. and Taylor, J. C.. Fine convergence and parabolic convergence for the Helmholtz equation and the heat equation. Illinois J. Math., 27 (1983), 7793.
8.Netuka, I.. Thinness and the heat equation. Časopis Pěst. Mat, 99 (1974), 293299.
9.Taylor, S. J. and Watson, N. A.. A Hausdorff measure classification of polar sets for the heat equation. Math. Proc. Cambridge Phil. Soc, 97 (1985), 325344.
10.Watson, N. A.. Thermal capacity. Proc. London Math. Soc, 37 (1978), 342362.
MathJax is a JavaScript display engine for mathematics. For more information see

MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed