Skip to main content Accessibility help
×
Home

SOME SHARP BILINEAR SPACE–TIME ESTIMATES FOR THE WAVE EQUATION

  • Neal Bez (a1), Chris Jeavons (a2) and Tohru Ozawa (a3)

Abstract

We prove a family of sharp bilinear space–time estimates for the half-wave propagator $\text{e}^{\text{i}t\sqrt{-\unicode[STIX]{x1D6E5}}}$ . As a consequence, for radially symmetric initial data, we establish sharp estimates of this kind for a range of exponents beyond the classical range.

Copyright

References

Hide All
1. Beals, M., Self-spreading and strength of singularities for solutions to semilinear wave equations. Ann. of Math. (2) 118 1983, 187214.
2. Beckner, W., Functionals for multilinear fractional embedding. Acta Math. Appl. Sin. Engl. Ser. 31 2015, 128.
3. Belazzini, J., Ghimenti, M. and Ozawa, T., Sharp lower bounds for Coulomb energy. Math. Res. Lett. (to appear); arXiv:1410.0958.
4. Bennett, J., Bez, N. and Iliopoulou, M., Flow monotonicity and Strichartz inequalities. Int. Math. Res. Not. IMRN 2015(19) 2015, 94159437.
5. Bennett, J., Bez, N., Jeavons, C. and Pattakos, N., On sharp bilinear Strichartz estimates of Ozawa–Tsutsumi type. J. Math. Soc. Japan (to appear); arXiv:1404.2466.
6. Bez, N. and Jeavons, C., A sharp Sobolev–Strichartz estimate for the wave equation. Electron. Res. Announc. Math. Sci. 22 2015, 4654.
7. Bez, N. and Rogers, K. M., A sharp Strichartz estimate for the wave equation with data in the energy space. J. Eur. Math. Soc. (JEMS) 15 2013, 805823.
8. Bez, N. and Sugimoto, M., Optimal forward and reverse estimates of Morawetz and Kato–Yajima type with angular smoothing index. J. Fourier Anal. Appl. 21 2015, 318341.
9. Bez, N. and Sugimoto, M., Optimal constants and extremisers for some smoothing estimates. J. Anal. Math. (to appear).
10. Bourgain, J., Estimates for cone multipliers. In Geometric Aspects of Functional Analysis (Operator Theory: Advances and Applications 77 ), Birkhäuser (Basel, 1995), 4160.
11. Bourgain, J., Global solutions of nonlinear Schrödinger equations. Amer. Math. Soc. Colloq. Publ. 46 1999, 8690.
12. Carneiro, E., A sharp inequality for the Strichartz norm. Int. Math. Res. Not. IMRN 16 2009, 31273145.
13. Cho, Y. and Ozawa, T., On radial solutions of semi-relativistic Hartree equations. Discrete Contin. Dyn. Syst. Ser. S 1 2008, 7182.
14. Fang, D. and Wang, C., Some remarks on Strichartz estimates for homogeneous wave equation. Nonlinear Anal. 65 2006, 697706.
15. Foschi, D., On an endpoint case of the Klainerman–Machedon estimates. Comm. Partial Differential Equations 25 2000, 15371547.
16. Foschi, D., Maximizers for the Strichartz inequality. J. Eur. Math. Soc. (JEMS) 9 2007, 739774.
17. Foschi, D. and Klainerman, S., Bilinear space–time estimates for homogeneous wave equations. Ann. Sci. Éc. Norm. Supér. (4) 33 2000, 211274.
18. Hidano, K., On weighted Strichartz estimates and NLS for radial data in Sobolev spaces of negative indices. RIMS Kôkyûroku Bessatsu B22 2010, 112.
19. Hidano, K. and Kurokawa, Y., Weighted HLS inequalities for radial functions and Strichartz estimates for wave and Schrödinger equations. Illinois J. Math. 52 2008, 365388.
20. Hundertmark, D. and Zharnitsky, V., On sharp Strichartz inequalities in low dimensions. Int. Math. Res. Not. IMRN 2006, Art. ID 34080, p. 18.
21. Jeavons, C., A sharp bilinear estimate for the Klein–Gordon equation in arbitrary space–time dimensions. Differential Integral Equations 27 2014, 137156.
22. Klainerman, S. and Machedon, M., Space–time estimates for null forms and the local existence theorem. Comm. Pure Appl. Math. 46 1993, 12211268.
23. Klainerman, S. and Machedon, M., Smoothing estimates for null forms and applications. Duke Math. J. 81 1995, 99134.
24. Klainerman, S. and Machedon, M., Remark on Strichartz–type inequalities. Int. Math. Res. Not. IMRN 5 1996, 201220; with appendices by Jean Bourgain and Daniel Tataru.
25. Klainerman, S. and Machedon, M., Estimates for null forms and the spaces H s, 𝛿 . Int. Math. Res. Not. IMRN 17 1996, 853865.
26. Klainerman, S. and Machedon, M., On the regularity properties of a model problem related to wave maps. Duke Math. J. 87 1997, 553589.
27. Klainerman, S. and Machedon, M., On the optimal regularity for gauge field theories. Differential Integral Equations 6 1997, 10191030.
28. Klainerman, S. and Selberg, S., Remark on the optimal regularity for equations of wave maps type. Comm. Partial Differential Equations 22 1997, 901918.
29. Lee, S., Bilinear restriction estimates for surfaces with curvatures of different signs. Trans. Amer. Math. Soc. 358 2006, 35113533.
30. Lee, S., Rogers, K. and Vargas, A., Sharp null form estimates for the wave equation in ℝ3+1 . Int. Math. Res. Not. IMRN 2008, Art. ID rnn 096, p. 18.
31. Lee, S. and Vargas, A., Sharp null form estimates for the wave equation. Amer. J. Math. 130 2008, 12791326.
32. Lieb, E. H., Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. of Math. (2) 118 1983, 349374.
33. Ozawa, T. and Rogers, K., Sharp Morawetz estimates. J. Anal. Math. 121 2013, 163175.
34. Ozawa, T. and Rogers, K., A sharp bilinear estimate for the Klein–Gordon equation in ℝ1+1 . Int. Math. Res. Not. IMRN 2014 2014, 13671378.
35. Ozawa, T. and Tsutsumi, Y., Space–time estimates for null gauge forms and nonlinear Schrödinger equations. Differential Integral Equations 11 1998, 201222.
36. Quilodrán, R., Nonexistence of extremals for the adjoint restriction inequality on the hyperboloid. J. Anal. Math. 125 2015, 3770.
37. Sogge, C., Lectures on Nonlinear Wave Equations, International Press (Cambridge, MA, 1995).
38. Sterbenz, J., Angular regularity and Strichartz estimates for the wave equation. Int. Math. Res. Not. IMRN 2005 2005, 187231.
39. Tao, T., Endpoint bilinear restriction theorems for the cone, and some sharp null form estimates. Math. Z. 238 2001, 215268.
40. Wolff, T., A sharp bilinear cone restriction estimate. Ann. of Math. (2) 153 2001, 661698.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed