Skip to main content Accessibility help
×
Home

The Santaló point of a function, and a functional form of the Santaló inequality

  • S. Artstein-Avidan (a1), B. Klartag (a2) and V. Milman (a3)

Abstract

Let L(f) denote the Legendre transform of a function f: ℝn → ℝ. A theorem of K. Ball about even functions is generalized, and it is proved that, for any measurable function f ≥ 0, there exists a translation f(x) = f(x−a) such that

Copyright

References

Hide All
[Ar]Arnold, V. I.. Mathematical Methods of Classical Mechanics (Translated from the Russian by Vogtmann, K. and Weinstein, A., second edition). Graduate Texts in Mathematics, 60. Springer-Verlag (New York, 1989).
[Bal]Ball, K.. PhD dissertation. University of Cambridge (1987).
[Ba2]Ball, K.. Logarithmically concave functions and sections of convex sets in ℝ. Studia Math., 88 (1988), 6984.
[Bar]Barthe, F.. On a reverse form of the Brascamp-Lieb inequality. Invent. Math., 134 (1988). 335361.
[Bo]Borell, C.. Convex set functions in d-space. Period. Math. Hungar., 6 (1975). 111136.
[Br]Brunn, H.. Referat Ober eine Arbeit: Exacte Grundlagen für eincr Theorie der Ovale (Bayer, S. B., ed.), Akad. Wiss., (1894), 93111.
[K]Klartag, B.. An isomorphic version of the slicing problem, J. Fund. Anal., 218 (2005). 372394.
[KM]Klartag, B. and Milman, V. D.. Geometry of log-concave functions and measures. Geom. Dedicata, 112 (2005), 169182.
[LO]Linnik, J. V. and Ostrovis'kiĭ, I. V., Decomposition of random variables and vectors (translated from the Russian). Translations of Mathematical Monographs. Vol. 48. American Mathematical Society, (Providence, R. I., 1977).
[Mau]Maurey, B.. Some deviation inequalities. Geom. Fund. Anal., 1 (1991), 188197.
[MeP1]Meyer, M. and Pajor, A.. On Santalo's inequality. Geometric Aspects of Functional Analysis (1987–88), Lecture Notes in Math., 1376, Springer (Berlin, 1989). 261263.
[MeP2]Meyer, M. and Pajor, A.. On the Blaschke-Santalo inequality. Arch. Math., 55 (1990). 8293.
[Mi1]Milman, V. D.. A certain transformation of convex functions and a duality of the β and δ-characteristics of a B-space. Dokl Akad, Nauk SSSR (1969), 33–35; Soviet Math. Dok., 10 (1969), 789792.
[Mi2]Milman, V. D.. Duality of some geometric characteristics of Banach spaces. Tear. Funksii. Funksional Analiz i Prilozhen, 18 (1973), 120137.
[P]Pisier, G.. The Volume of Convex Bodies and Banach Space Geometry. Cambridge Tracts in Mathematics, 94. Cambridge University Press (Cambrige, 1989).
[R]Rockafellar, R. T.. Convex Analysis. Princeton Mathematical Series, No. 28, Princeton University Press (Princeton, N.J., 1970).
[Sa]Santaló, L. A.. An affine invariant for convex bodies of n-dimensional space. (Spanish). Portugaliae Math., 8 (1949) 155161.
[T]Talagrand, M.. A new isoperimetric inequality and the concentration of measure phenomenon. Geom. Aspects of Fund. Anual. (1989-90), Lecture Notes in Math..1469, Springer (Berlin, 1991), 94124.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

Related content

Powered by UNSILO

The Santaló point of a function, and a functional form of the Santaló inequality

  • S. Artstein-Avidan (a1), B. Klartag (a2) and V. Milman (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.