Skip to main content Accessibility help


  • Spiros A. Argyros (a1), Ioannis Gasparis (a2) and Pavlos Motakis (a3)


Based on a construction method introduced by Bourgain and Delbaen, we give a general definition of a Bourgain–Delbaen space and prove that every infinite-dimensional separable ${\mathcal{L}}_{\infty }$ -space is isomorphic to such a space. Furthermore, we provide an example of a ${\mathcal{L}}_{\infty }$ and asymptotic $c_{0}$ space not containing $c_{0}$ .



Hide All
1. Alspach, D. E., The dual of the Bourgain–Delbaen space. Israel J. Math. 117 2000, 239259.
2. Alspach, D. E. and Benyamini, Y., C (K) quotients of separable L spaces. Israel J. Math. 32 1979, 145160.
3. Argyros, S. A., Beanland, K. and Motakis, P., The strictly singular operators in Tsirelson like reflexive spaces. Illinois J. Math. 57(4) 2013, 11731217.
4. Argryros, S., Freeman, D., Haydon, R., Odell, E., Raikoftsalis, Th., Schlumprecht, Th. and Zisimopoulou, D. Z., Embedding Banach spaces into spaces with very few operators. J. Funct. Anal. 262(3) 2012, 825849.
5. Argyros, S. A. and Haydon, R. G., A hereditarily indecomposable L -space that solves the scalar-plus-compact problem. Acta Math. 206 2011, 154.
6. Bourgain, J. and Delbaen, F., A class of special L spaces. Acta Math. 145 1980, 155176.
7. Freeman, D., Odell, E. and Schlumprecht, Th., The universality of 1 as a dual space. Math. Ann. 351(1) 2011, 149186.
8. Godefroy, G. and Li, D., Some natural families of M-ideals. Math. Scand. 66 1990, 249263.
9. Johnson, W. B., Rosenthal, H. P. and Zippin, M., On bases, finite dimensional decompositions and weaker structures in Banach spaces. Israel J. Math. 9 1971, 488506.
10. Lewis, D. and Stegall, C., Banach spaces whose duals are isomorphic to 1(𝛤). J. Funct. Anal. 12 1973, 177187.
11. Lindenstrauss, J. and Pełczyński, A., Absolutely summing operators in L p -spaces and their applications. Studia Math. 29 1968, 275326.
12. Lindenstrauss, J. and Rosenthal, H. P., The L p spaces. Israel J. Math. 7 1969, 325349.
13. Pełczynśki, A., On Banach spaces containing L 1(𝜇). Studia Math. 30 1968, 231246.
14. Stegall, C., Banach spaces whose duals contain 1(𝛤) with applications to the study of dual L 1(𝜇) spaces. Trans. Amer. Math. Soc. 176 1973, 463477.
15. Tsirelson, B. S., Not every Banach space contains p or c 0 . Funct. Anal. Appl. 8 1974, 138141.
MathJax is a JavaScript display engine for mathematics. For more information see

MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed