Skip to main content Accessibility help
×
Home

On an extremal property of the Rudin-Shapiro sequence

  • Jean-Paul Allouche (a1) and Michel Mendès France (a2)

Abstract

Extending the well-known property of the Rudin- Shapiro sequence ε = (ε(n)) with values in {−1, +1} satisfying

we show that for all unimodular 2-multiplicative sequences f = (f(n))

Copyright

References

Hide All
1.Allouche, J. P. and Mendès France, M.. Suite de Rudin-Shapiro et modèle d'Ising. To appear in Bull. Soc. Math. France, 1985.
2.Brilhart, J. and Carlitz, L.. Note on the Shapiro polynomials. Proc. Amer. Math. Soc, 25 (1970), 114119.
3.Brilhart, J., Erdős, P. and Morton, P.. On sums of Rudin-Shapiro coefficients II. Pac. J. Math, 107 (1983), 3969.
4.Christol, G., Kamae, T., Mendès France, M. and Rauzy, G.. Suites algébriques, automates et substitutions. Bull. Soc. Math. France, 108 (1980), 401419.
5.Gelfond, A. O.. Sur les nombres qui ont des propriétés additives et multiplicatives données. Acta Arith., 13 (1968), 259265.
6.Kahane, J. P. and Salem, R.. Ensemblesparfaits et séries trigonométriques (Hermann, Paris, 1963).
7.Mahler, K.. On the translation properties of a simple class of arithmetical functions. J. Math. and Phys., 6 (1927), 158163.
8.Mendès France, M.. Les suites à spectre vide et la répartition modulo 1. J. Number Theory, 5 (1973), 115.
9.Mendés France, M. and Tenenbaum, G.. Dimension des courbes planes, papiers pliés et suite de Rudin-Shapiro. Bull. Soc. Math. France, 109 (1981), 207215.
10.Morse, M.. Recurrent geodesies on a surface of negative curvature. Trans. Amer. Math. Soc., 22 (1921), 84100.
11.Rudin, W.. Some theorems on Fourier coefficients. Proc. Amer. Math. Soc., 10 (1959), 855859.
12.Shapiro, H. S.. Extremal problems for polynomials and power series. Thesis (M.I.T., 1951).
13.Thue, A.. Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Videnskapsselskapets Skrifter, I. Mat. nat. Kl, Kristiania (1906), 122.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed