No CrossRef data available.
Published online by Cambridge University Press: 02 August 2018
Given any positive integers
$m$
and
$d$
, we say a sequence of points
$(x_{i})_{i\in I}$
in
$\mathbb{R}^{m}$
is Lipschitz-
$d$
-controlling if one can select suitable values
$y_{i}\;(i\in I)$
such that for every Lipschitz function
$f\,:\,\mathbb{R}^{m}\,\rightarrow \,\mathbb{R}^{d}$
there exists
$i$
with
$|f(x_{i})\,-\,y_{i}|\,<\,1$
. We conjecture that for every
$m\leqslant d$
, a sequence
$(x_{i})_{i\in I}\subset \mathbb{R}^{m}$
is
$d$
-controlling if and only if
$$\begin{eqnarray}\displaystyle \sup _{n\in \mathbb{N}}\frac{|\{i\in I:|x_{i}|\leqslant n\}|}{n^{d}}=\infty . & & \displaystyle \nonumber\end{eqnarray}$$
$d$
-controlling. We also prove the conjecture for
$m=1$
.
Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.
* Views captured on Cambridge Core between 02nd August 2018 - 20th April 2021. This data will be updated every 24 hours.