Skip to main content Accessibility help
×
Home

The Hausdorff dimension of Julia sets of entire functions II

  • Gwyneth M. Stallard (a1)

Abstract

Let f be a transcendental entire function such that the finite singularities of f−1 lie in a bounded set. We show that the Hausdorff dimension of the Julia set of such a function is strictly greater than one.

Copyright

References

Hide All
[1]Ash, R. B.. Measure, integration and functional analysis (Academic Press, 1972).
[2]Baker, I. N.. Limit functions and sets of non-normality in iteration theory. Ann. Acad. Sci. Fenn. Ser. A, I Math. 467 (1970), 117.
[3]Baker, I. N.. The domains of normality of an entire function. Ann. Acad. Sci. Fenn. Ser. A, I Math, 1 (1975), 277283.
[4]Baker, I. N., Kotus, J. and Yinian, . Iterates of meromorphic functions III. Ergod. Th. and Dynam. Sys. 11 (1991), 603618.
[5]Duren, P. L.. Univalent functions (Springer, 1953).
[6]Eremenko, A. E. and Lyubich, M. Yu. Dynamical properties of some classes of entire functions. Stony Brook Institute of Mathematical Sciences, preprint 1990/1994.
[7]Fatou, P.. Sur les équations fonctionelles. Bull. Soc. Math. France 47 (1919), 161271;
[7]Fatou, P.. Sur les équations fonctionelles. Bull. Soc. Math. France 48 (1920), 3394, 208314.
[8]Fatou, P.. Sur l'itération des fonctions transcendantes entières. Acta. Math. 47 (1926), 337370.
[9]Hayman, W. K. and Kennedy, P. B.. Subharmonic functions I (Academic Press, 1976).
[10]Stallard, G. M.. The Hausdorff dimension of Julia sets of entire functions. Ergod. Th. and Dynam. Sys. 11 (1991), 769777.
[11]Sullivan, D.. Conformal dynamical systems; in Geometric dynamics, Lecture Notes in Math. vol. 1007 (Springer-Verlag, 1983), pp. 725752.

The Hausdorff dimension of Julia sets of entire functions II

  • Gwyneth M. Stallard (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed