Skip to main content Accessibility help
×
Home

Curves of genus 2 with good reduction away from 2 with a rational Weierstrass point

  • J. R. Merriman (a1) and N. P. Smart (a1)

Abstract

All curves of the title are calculated up to an equivalence relation which is coarser than the relation of isogeny between the associated Jacobian varieties.

Copyright

References

Hide All
[1]Birch, B. J. and Kuyk, W.. Modular Functions of One Variable IV. Springer-Verlag, 1975.
[2]Coghlan, F. B.. Elliptic curves with conductor N = 2m3n. PhD thesis, University of Manchester, 1967.
[3]Cremona, J. E.. Hyperbolic tesselations, modular symbols and elliptic curves over complex quadratic fields. Comp. Math. 51 (1984), 275323.
[4]Cremona, J. E.. Modular symbols for Γ1(N) and elliptic curves with everywhere good reduction. Math. Proc. Cambridge Philos. Soc. 111 (1992), 199218.
[5]Faltings, G.. Endlichkeitssätze für abelsche Varietäten über Zahlenkörpen. Inv. Math. 73 (1983), 349366.
[6]Livné, R.. Cubic exponential sums and Galois representations. Contemp. Math. 67 (1987), 247261.
[7]Merriman, J. R.. Binary forms and the reduction of curves. D.Phil, thesis, Oxford University, 1970.
[8]Ogg, A. P.. Abelian curves of 2-power conductor. Math. Proc. Cambridge Philos. Soc. 62 (1966), 143148.
[9]Oort, F.. Hyperelliptic curves over number fields. In Popp, H. (ed.), Classification of Algebraic Varieties and Compact Complex Manifolds (Springer-Verlag, 1974), 211218.
[10]Paršin, A. N.. Minimal models of curves of genus 2 and homomorphisms of abelian varieties defined over a field of finite characteristic. Math. of. USSR, Izvestija, 6, (1972), 65108.
[11]Pinch, R. G. E.. Elliptic curves with good reduction away from 2. II. Math. Proc. Cambridge Philos. Soc. 100 (1986), 435457.
[12]Pinch, R. G. E.. Elliptic curves with good reduction away from 3. Math. Proc. Cambridge Philos. Soc. 101 (1987), 451459.
[13]Pohst, M.. On the computation of number fields of small discriminants including the minimum discriminants of sixth degree fields. J. Number Theory 14 (1982), 99117.
[14]Serre, J. P.. Local Fields. Springer-Verlag, 1979.
[15]Serre, J. P. and Tate, J. T.. Good reduction of abelian varieties. Ann. Math. 88 (1968), 492517.
[16]Smart, N. P.. A class of diophantine equations. Publ. Math. Debrecen 41 (1992), 225229.
[17]Smart, N. P.. The Computer Solution Of Diophantine Equations. Ph.D. thesis, University of Kent, 1992.
[18]Stroeker, R. J.. Reduction of elliptic curves over imaginary quadratic number fields. Pacific J. Math. 108 (1983), 451463.
[19]Top, J.. Hecke L-series related with algebraic cycles or with Siegel modular forms. Ph.D. thesis, Utrecht, 1989.
[20]Šafarevič, I. R.. Algebraic number fields: Proc. Int. Cong. Math. Stockholm. AMS Translations 31 (1963), 2539.
[21]De Weger, B. M. M.. The weighted sum of two S-units being a square. Indagationes Mathematicae 1 (1990), 243262.

Curves of genus 2 with good reduction away from 2 with a rational Weierstrass point

  • J. R. Merriman (a1) and N. P. Smart (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed