Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T07:55:25.670Z Has data issue: false hasContentIssue false

Habitat conditions and host tree properties affect the occurrence, abundance and fertility of the endangered lichen Lobaria pulmonaria in wooded meadows of Estonia

Published online by Cambridge University Press:  08 February 2012

Inga JÜRIADO
Affiliation:
Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai st., Tartu 51005, Estonia. Email: inga.juriado@ut.ee
Leelia KARU
Affiliation:
Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai st., Tartu 51005, Estonia. Email: inga.juriado@ut.ee Türi College, University of Tartu, 13b Viljandi st., Türi 72213, Estonia.
Jaan LIIRA
Affiliation:
Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai st., Tartu 51005, Estonia. Email: inga.juriado@ut.ee

Abstract

We assessed multiple environmental factors that might influence the population vitality of the epiphytic lichen Lobaria pulmonaria at the individual tree and habitat levels in partially overgrown wooded meadows in Estonia. A total of 301 trees of four species were sampled at nine study plots, using a stratified factorial scheme, 151 colonized by L. pulmonaria and 150 not colonized by L. pulmonaria forming the control group. We used the Generalized Linear Models (GLZ) to identify a complex of factors which predicts the probability of the lichen occurring on tree trunks and the presence of apothecia on its individuals. We employed the General Linear Mixed Model (GLMM) to study the relationship between cover of L. pulmonaria and environmental factors. The occurrence probability of L. pulmonaria on tree trunks increased with increasing light availability and height of deciduous shrubs near the trunk, and decreased with increasing distance to the nearest colonized tree. The host tree species and its trunk properties were also of importance, particularly the facilitating effect of the cover of bryophytes upon L. pulmonaria. The probability of occurrence of apothecia increased with maximum values of bark pH and cover of L. pulmonaria on the trunk. We conclude that partially overgrown wooded meadows are suitable habitats for L. pulmonaria. However, to maintain the vitality of these populations, a specific management scheme, preventing development of a dense stand, should be applied. Management requirements would include 1) selective cutting of overgrowing coniferous trees (particularly spruce), 2) preservation of adult and younger potential host trees within 10–20 m of colonized trees, 3) preservation of scattered deciduous shrubs in the vicinity of the host trees.

Type
Research Article
Copyright
Copyright © British Lichen Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. In 2nd International Symposium on Information Theory (Petrov, B.N. & Csáki, F., eds): 267281. Budapest: Akadémiai Kiadó.Google Scholar
Andersson, L., Martverk, R., Külvik, M., Palo, A. & Varblane, A. (2003) Woodland Key Habitat Inventory in Estonia 1999–2002. Tartu: Regio Publishing.Google Scholar
Arold, I. (2005) Estonian Landscapes. Tartu: Tartu University Press [In Estonian with English summary].Google Scholar
Asplund, J. & Gauslaa, Y. (2008) Mollusc grazing limits growth and early development of the old forest lichen Lobaria pulmonaria in broadleaved deciduous forests. Oecologia 155: 9399.Google Scholar
Auzinš, R. & Ek, T. (2001) Woodland key habitats in Latvia. In Tools in Preserving Biodiversity in Nemoral and Boreonemoral Biomes of Europe (Andersson, L., Marciau, R., Paltto, H., Tardy, B. & Read, H., eds.): 4447. Textbook 1, NACONEX programme.Google Scholar
Belinchón, R., Martínez, I., Otálora, M. A. G., Aragón, G., Dimas, J. & Escudero, A. (2009) Fragment quality and matrix affect epiphytic performance in a Mediterranean forest landscape. American Journal of Botany 96: 19741982.CrossRefGoogle Scholar
Berglund, H. & Jonsson, B. G. (2003) Nested plant and fungal communities; the importance of area and habitat quality in maximizing species capture in boreal old-growth forests. Biological Conservation 112: 319328.Google Scholar
Bruun, H. H. (2000) Inventering av lunglaven (Lobaria pulmonaria) på Åland år 1997. Memoranda Societatis pro Fauna et Flora Fennica 76: 1521.Google Scholar
Carlsson, R. & Nilsson, K. (2009) Status of the red-listed lichen Lobaria pulmonaria on the Åland Islands, SW Finland. Annales Botanici Fennici 46: 549554.Google Scholar
Denison, W. C. (2003) Apothecia and ascospores of Lobaria oregana and Lobaria pulmonaria investigated. Mycologia 95: 513518.CrossRefGoogle ScholarPubMed
Edman, M., Eriksson, A.-M. & Villard, M.-A. (2008) Effects of selection cutting on the abundance and fertility of indicator lichens Lobaria pulmonaria and Lobaria quercizans. Journal of Applied Ecology 45: 2633.Google Scholar
Gaggiotti, O. E (1996) Population genetic models of source–sink metapopulations. Theoretical Population Biology 50: 178208.Google Scholar
Gauslaa, Y. (1985) The ecology of Lobarion pulmonariae and Parmelion caperatae in Quercus dominated forests in south-west Norway. Lichenologist 17: 117140.Google Scholar
Gauslaa, Y. (1995) The Lobarion, an epiphytic community of ancient forests threatened by acid rain. Lichenologist 27: 5976.Google Scholar
Gauslaa, Y. (2006) Trade-off between reproduction and growth in the foliose old forest lichen Lobaria pulmonaria. Basic and Applied Ecology 7: 455460.Google Scholar
Gauslaa, Y., Lie, M., Solhaug, K. A. & Ohlson, M. (2006) Growth and ecophysiological acclimation of the foliose lichen Lobaria pulmonaria in forests with contrasting light climates. Oecologia 147: 406416.Google Scholar
Gauslaa, Y., Palmqvist, K., Solhaug, K. A., Holien, H. & Hilmo, O. (2007) Growth of epiphytic old forest lichens across climatic and successional gradients. Canadian Journal of Forest Research 37: 18321845.Google Scholar
Gilbert, O. L. (1970) Further studies on the effect of sulphur dioxide on lichens and bryophytes. New Phytologist 69: 605627.Google Scholar
Glavich, D. A., Geiser, L. H. & Mikulin, A. G. (2005) Rare epiphytic coastal lichen habitats, modeling, and management in the Pacific Northwest. Bryologist 108: 377390.Google Scholar
Gu, W.-D., Kuusinen, M., Konttinen, T. & Hanski, I. (2001) Spatial pattern in the occurrence of the lichen Lobaria pulmonaria in managed and virgin boreal forests. Ecography 24: 139150.Google Scholar
Gustafsson, L., Fiskesjö, A., Ingelög, T., Pettersson, B. & Thor, G. (1992) Factors of importance to some lichen species of deciduous broad-leaved woods in southern Sweden. Lichenologist 24: 255266.Google Scholar
Hakulinen, R. (1964) Die Flechtengattung Lobaria Schreb. in Ostfennoskandien. Annales Botanici Fennici 1: 202213.Google Scholar
Hallingbäck, T. & Martinsson, P.-O. (1987) The retreat of two lichens, Lobaria pulmonaria and L. scrobiculata in the district of Gäsene (SW Sweden). Windahlia 17: 2732.Google Scholar
Hawksworth, D. L., Rose, F. & Coppins, B. J. (1973) Changes in the lichen flora of England and Wales attributable to pollution of the air by sulphur dioxide. In Air Pollution and Lichens (Ferry, B. W. Baddeley, M. S. & Hawksworth, D. L., eds.): 330367. London: Athlone Press.Google Scholar
Hilmo, O., Rocha, L., Holien, H. & Gaulaa, Y. (2011) Establishment success of lichen diaspores in young and old boreal rainforests: a comparison between Lobaria pulmonaria and L. scrobiculata. Lichenologist 43: 241255.Google Scholar
Hunter, M. L. & Webb, S. L. (2002) Enlisting taxonomists to survey poorly known taxa for biodiversity conservation: a lichen case study. Conservation Biology 16: 660665.CrossRefGoogle Scholar
Istomina, N. B. [Истомина, Н. Б.] (1996) [The biology of Lobaria pulmonaria (L.) Hoffm. and Menegazzia terebrata (Hoffm.) Massal. in southern taiga forests of the European Russia]. Cand. Sci. (Biol.) Dissertation, Moscow. [In Russian].Google Scholar
James, P. W., Hawksworth, D. L. & Rose, F. (1977) Lichen communities in the British Isles: a preliminary conspectus. In Lichen Ecology (Seaward, M. R. D., ed.): 295413. London: Academic Press.Google Scholar
Jongman, R. H. G., Ter Braak, C. J. F. & van Tongeren, O. F. R. (1995) Data Analysis in Community and Landscape Ecology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Jönsson, M. T., Thor, G. & Johansson, P. (2011) Environmental and historical effects on lichen diversity in managed and unmanaged wooded meadows. Applied Vegetation Science 14: 120131.Google Scholar
Jüriado, I. & Liira, J. (2009) Distribution and habitat ecology of the threatened forest lichen Lobaria pulmonaria in Estonia. Folia Cryptogamica Estonica 46: 5565.Google Scholar
Jüriado, I. & Liira, J. (2010) Threatened forest lichen Lobaria pulmonaria – its past, present and future in Estonia. Forestry Studies 53: 1524.CrossRefGoogle Scholar
Jüriado, I., Liira, J., Paal, J. & Suija, A. (2009) Tree and stand level variables influencing diversity of lichens on temperate broad-leaved trees in boreo-nemoral floodplain forests. Biodiversity and Conservation 18: 105125.Google Scholar
Jüriado, I., Liira, J., Csencsics, D., Widmer, I., Adolf, C., Kohv, K. & Scheidegger, C. (2011) Dispersal ecology of the endangered woodland lichen Lobaria pulmonaria in managed hemi-boreal forest landscape. Biodiversity and Conservation 20: 18031819.Google Scholar
Kalwij, J. M., Wagner, H. H. & Scheidegger, C. (2005) Effects of stand-level disturbance events on the spatial distribution of a lichen indicator. Ecological Applications 15: 20152024.Google Scholar
Kricke, R. (2002) Measuring bark pH. In Monitoring With Lichens – Monitoring Lichens (Nimis, P. L., Scheidegger, C. & Wolseley, P. A., eds): 333336. Dordrecht: Kluwer Academic Publishers.Google Scholar
Kukk, T. & Kull, K. (1997) Wooded meadows. Estonia Maritima 2: 1249.Google Scholar
Kukk, T. & Sammul, M. (2006) Area of seminatural Natura 2000 habitat types in Estonia. In Year-book of the Estonian Naturalists' Society (Sammul, M., ed): 114158. Tartu: Estonian Naturalists' Society.Google Scholar
Laasimer, L. & Masing, V. (1995) Flora and plant cover. In Estonia Nature (Raukas, A., ed.): 364401. Tallinn: Valgus & Eesti Entsüklopeediakirjastus [In Estonian with English summary].Google Scholar
Leppik, E. & Jüriado, I. (2008) Factors important for epiphytic lichen communities in wooded meadows of Estonia. Folia Cryptogamica Estonica 44: 7587.Google Scholar
Leppik, E., Jüriado, I. & Liira, J. (2011) Changes in stand structure due to the cessation of traditional land use in wooded meadows impoverish epiphytic lichen communities. Lichenologist 43: 257274.Google Scholar
Littell, R. C., Milliken, G. A., Stroup, W. W. & Wolfinger, R. D. (1996) SAS System for Mixed Models. Cary, North Carolina: SAS Institute Inc.Google Scholar
Mikhailova, I., Trubina, M., Vorobeichik, E. & Scheidegger, C. (2005) Influence of environmental factors on the local-scale distribution of cyanobacterial lichens: case study in the North Urals, Russia. Folia Cryptogamica Estonica 41: 4554.Google Scholar
Öckinger, E. & Nilsson, S. G. (2010) Local population extinction and vitality of an epiphytic lichen in fragmented old-growth forest. Ecology 91: 21002109.Google Scholar
Öckinger, E., Niklasson, M. & Nilsson, S. G. (2005) Is local distribution of the epiphytic lichen Lobaria pulmonaria limited by dispersal capacity or habitat quality? Biodiversity and Conservation 14: 759773.Google Scholar
Pykälä, J. (2004) Effects of new forestry practices on rare epiphytic macrolichens. Conservation Biology 18: 831838.Google Scholar
Ranius, T., Johansson, P., Berg, N. & Niklasson, M. (2008) The influence of tree age and microhabitat quality on the occurrence of crustose lichens associated with old oaks. Journal of Vegetation Science 19: 653662.Google Scholar
Riiali, A. Penttinen, A. & Kuusinen, M. (2001) Bayesian mapping of lichens growing on trees. Biometrical Journal 43: 717736.Google Scholar
Rose, F. (1988) Phytogeographical and ecological aspects of Lobarion communities in Europe. Botanical Journal of the Linnean Society 96: 6979.Google Scholar
Rose, F. (1992) Temperate forest management: its effects on bryophyte and lichen floras and habitats. In Bryophytes and Lichens in a Changing Environment (Bates, J. W. & Farmer, A. M., eds): 211233. Oxford: Clarendon Press.Google Scholar
Rose, F. (2001) Parkland lichens and management. In Lichen Habitat Management (Fletcher, A., ed.): 06-1–06-5. London: British Lichen Society.Google Scholar
SAS Institute Inc (1989) SAS/STAT User's Guide, Version 6, vol 2, 4th edn. Cary, North Carolina: SAS Institute Inc.Google Scholar
Scheidegger, C. & Goward, T. (2002) Monitoring lichens for conservation: red lists and conservation action plans. In Monitoring with Lichens — Monitoring Lichens (Nimis, P. L., Scheidegger, C. & Wolseley, P. A., eds.): 163181. Dordrecht: Kluwer Academic Publishers.Google Scholar
Scheidegger, C. & Werth, S. (2009) Conservation strategies for lichens: insights from population biology. Fungal Biology Reviews 23: 5566.Google Scholar
Scheidegger, C., Frey, B. & Zoller, S. (1995) Transplantation of symbiotic propagules and thallus fragments: methods for the conservation of threatened epiphytic lichen populations. Mitteilungen der Eidgenössishen Forschungsanstalt für Wald, Schnee und Landschaft 70: 4162.Google Scholar
Scheidegger, C., Frey, B. & Walser, J. C. (1998) Reintroduction and augmentation of populations of the endangered Lobaria pulmonaria: methods and concepts. In Lobarion Lichens as Indicators of the Primeval Forests of the Eastern Carpathians (Darwin International Workshop, 25–30 May 1998, Kostrino, Ukraine) (Kondratyuk, S. J. & Coppins, B., eds.): 3352. Kiev: Phytosociocentre.Google Scholar
Schmidt, J., Kricke, R. & Feige, G. B. (2001) Measurements of bark pH with a modified flathead electrode. Lichenologist 33: 456460.CrossRefGoogle Scholar
Shao, J. (1997) An asymptotic theory for linear model selection. Statistica Sinica 7: 221264.Google Scholar
Shmida, A. & Wilson, M. V. (1985) Biological determinants of species diversity. Journal of Biogeography 12: 120.CrossRefGoogle Scholar
Sillett, S. C. & McCune, B. (1998) Survival and growth of cyanolichen transplants in Douglas-fir forest canopies. Bryologist 101: 2031.Google Scholar
Snäll, T., Hagström, A., Rudolphi, J. & Rydin, H. (2004) Distribution pattern of the epiphyte Neckera pennata on three spatial scales – importance of past landscape structure, connectivity and local conditions. Ecography 27: 757766.Google Scholar
Snäll, T., Pennanen, J., Kivistö, L. & Hanski, I. (2005) Modelling epiphyte metapopulation dynamics in a dynamic forest landscape. Oikos 109: 209222.Google Scholar
StatSoft, Inc (2005) Statistica for Windows, Ver 7.1. Tulas: StatSoft, Inc.Google Scholar
Veneklaas, E. J., Zagt, R. J., Van Leerdam, A., Van Ek, R., Broekhoven, A. J. & Van Genderen, M. (1990) Hydrological properties of the epiphyte mass of montane tropical rainforest. Vegetatio 89: 183192.Google Scholar
Wirth, V. (1995). Die Flechten Baden-Württembergs. Stuttgart: Verlag Eugen Ulmer.Google Scholar
Wolseley, P. (1991) Observations on the composition and distribution of the ‘Lobarion’ in forests of South East Asia. In Tropical Lichens: their Systematics, Conservation, and Ecology (Galloway, D. J., ed.): 217243. Oxford: Clarendon Press.Google Scholar
Wolseley, P. & James, P. (2000) Factors affecting changes in species of Lobaria in sites across Britain 1986–1998. Forest Snow and Landscape Research 75: 319338.Google Scholar