Skip to main content Accessibility help

Diversity of Ramalina sinensis and its photobiont in local populations



Ramalina sinensis is a widespread lichen in the Northern Hemisphere with sparse local populations, and its potential to adapt to changing environmental conditions is unknown. The objectives of this study were to determine whether geographical distance reflects fungal phylogenetic patterns, and to infer algal identity and its pattern of geographical distribution. Twenty-three samples of R. sinensis were collected from three geographical regions in Manitoba. The internal transcribed spacer of ribosomal DNA (ITS rDNA) was sequenced from each of the algal and fungal partners, and phylogenetic analyses were performed. Algal haplotypes were estimated and placed on a map of the geographical regions. Although the fungal partner showed no geographical segregation within Manitoba, the divergence of three samples added to the phylogeny from GenBank suggested that a pattern may be evident if broader geographical distances were examined. The photobiont sequence was determined to be most similar to that of Trebouxia impressa and T. potteri, two widely distributed algal species. The algal partner showed no geographical structure with sequence polymorphism or haplotype analyses. The abundance of sexual reproduction might explain widespread occurrence and the absence of geographical segregation of the fungus. This study suggests that the diversity in each of the symbionts of R. sinensis should not be a limiting factor for adaptation.



Hide All
Beck, A., Kasalicky, T. & Rambold, G. (2002) Myco-photobiontal selection in a Mediterranean cryptogam community with Fulgensia fulgida . New Phytologist 153: 317326.
Boch, S., Prati, D., Werth, S., Rüetschi, J. & Fischer, M. (2011) Lichen endozoochory by snails. PLoS ONE 6: e18770.
Brodo, I. M., Duran Sharnoff, S. & Sharnoff, S. (2001) Lichens of North America. New Haven & London: Yale University Press.
Clement, M., Posada, D. & Crandall, K. A. (2000) TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 16571660.
Cordeiro, L. M. C., Reis, R. A., Cruz, L. M., Stocker-Wörgötter, E., Grube, M. & Iacomini, M. (2005) Molecular studies of photobionts of selected lichens from coastal vegetation of Brazil. FEMS Microbiology Ecology 54: 381390.
Culberson, C. (1972) Improved conditions and new data for the identification of lichen products by a standardized thin layer chromatographic method. Journal of Chromatography 72: 113125.
Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783791.
Friedl, T. & Büdel, B. (2008) Photobionts. In Lichen Biology. Second Edition. (Nash, T. H. III, ed.): 726. Cambridge: Cambridge University Press.
Gardes, M. & Bruns, T. D. (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113118.
Goffinet, B. & Bayer, R. J. (1997) Characterization of mycobionts of photomorph pairs in the Peltigeraceae (lichenized Ascomycetes) based on internal transcribed spacer sequences of the nucler ribosomal DNA. Fungal Genetics and Biology 21: 228237.
Grube, M., DePriest, P. T., Gargas, A. & Hafellner, J. (1995) DNA isolation from lichen ascomata. Mycological Research 99: 13211324.
Guzow-Krzeminska, B. (2006) Photobiont flexibility in the lichen Protoparmeliopsis muralis as revealed by ITS rDNA analyses. Lichenologist 38: 469476.
Handa, S., Ohmura, Y., Nakano, T. & Nakahara-Tsubota, M. (2007) Airbourne green microalgae (Chlorophyta) in snowfall. Hikobia 15: 109120.
Hauck, M., Helms, G. & Friedl, T. (2007) Photobiont selectivity in the lichens Hypogymnia physodes and Lecanora conizeaoides . Lichenologist 39: 195204.
Hedenås, H., Lundin, K. & Ericson, L. (2006) Interaction between a lichen and a fungal parasite in a successional community: implications for conservation. Journal of Vegetation Science 17: 207216.
Helms, G., Friedl, T., Rambold, G. & Mayrhofer, H. (2001) Identification of photobionts from the lichen family Physciaceae using algal-specific ITS rDNA sequencing. Lichenologist 33: 7386.
Hermansson, J. & Kudryatseva, D. (1995) Notes on the lichens of the Pechoro-Ilych Zapovednik, Komi Republic, Russia. Graphis Scripta 7: 6778.
Honegger, R. (1996) Morphogenesis. In Lichen Biology (Nash, T. H. III, ed.): 6587. Cambridge: Cambridge University Press.
Huelsenbeck, J. P., Ronquist, F., Nielsen, R. & Bollback, J. P. (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294: 23102314.
Joneson, S. (2003) Studies in Ramalina (Ascomycotina, Lecanorales) with emphasis on the R. almquistii species complex. M.Sc. thesis, University of Washington.
Kroken, S. & Taylor, J. W. (2000) Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia . Bryologist 103: 645660.
LaGreca, S. (1999) A phylogenetic evaluation of the Ramalina americana chemotype complex (lichenized Ascomycota, Ramalinaceae) based on rDNA ITS sequence data. Bryologist 102: 602618.
Li, W. C., Guo, S. Y. & Guo, L. D. (2007) Endophytic fungi VII. Three new records from lichens in China. Mycosystema 26: 3235.
Lücking, R., Lawrey, J. D., Sikaroodi, M., Gillevet, P. M., Chaves, J. L., Sipman, H. J. M. & Bungartz, F. (2009) Do lichens domesticate photobionts like farmers domesticate crops? Evidence from a previously unrecognized lineage of filamentous cyanobacteria. American Journal of Botany 96: 14091418.
Meier, F. A., Scherrer, S. & Honegger, R. (2002) Faecal pellets of lichenivorous mites contain viable cells of the lichen-forming ascomycete Xanthoria parietina and its green algal photobiont, Trebouxia arboricola . Biological Journal of the Linnean Society 76: 259268.
Muggia, L., Zellnig, G., Rabensteiner, J. & Grube, M. (2010) Morphological and phylogenetic study of algal partners associated with the lichen-forming fungus Tephromela atra from the Mediterranean region. Symbiosis 51: 149160.
Mukhtar, A., Garty, J. & Galun, M. (1994) Does the lichen alga Trebouxia occur free-living in nature: further immunological evidence. Symbiosis 17: 247253.
Nelsen, M. P. & Gargas, A. (2008) Dissociation and horizontal transmission of codispersing lichen symbionts in the genus Lepraria (Lecanorales: Stereocaulaceae). New Phytologist 177: 264275.
Ohmura, Y., Kawachi, M., Kasai, F. & Watanabe, M. (2006) Genetic combinations of symbionts in a vegetatively reproducing lichen, Parmotrema tinctorum, based on ITS rDNA sequences. Bryologist 109: 4359.
Orange, A., James, P. W. & White, F. J. (2001) Microchemical Methods for the Identification of Lichens. London: British Lichen Society.
Otálora, M. A. G., Martínez, I., O'Brien, H., Molina, M. C., Aragón, G. & Lutzoni, F. (2010) Multiple origins of high reciprocal symbiotic specificity at an intercontinental spatial scale among gelatinous lichens (Collemataceae, Lecanoromycetes). Molecular Phylogenetics and Evolution. 56: 10891095.
Peksa, O. J. & Skaloud, P. (2011) Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae). Molecular Ecology 20: 39363948.
Piercey-Normore, M. D. (2004) Selection of algal genotypes by three species of lichen fungi in the genus Cladonia . Canadian Journal of Botany 82: 947961.
Piercey-Normore, M. D. (2006) The lichen-forming ascomycete Evernia mesomorpha associates with multiple genotypes of Trebouxia jamesii . New Phytologist 169: 331344.
Piercey-Normore, M. D. & DePriest, P. T. (2001) Algal switching among lichen symbioses. American Journal of Botany 88: 14901498.
Posada, D. & Crandall, K. A. (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817818.
Rambaut, A. (2001) Se-Al: Sequence Alignment Editor V2.0. Oxford: University of Oxford.
Ronquist, F. & Huelsenbeck, J. P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 15721574.
Stocker-Worgotter, E., Elix, J. A. & Grube, M. (2004) Secondary chemistry of lichen-forming fungi: chemosyndromic variation and DNA analyses of cultures and chemotypes in the Ramalina farinacea complex. Bryologist 107: 152162.
Summerfield, T. C., Galloway, D. J. & Eaton-Rye, J. J. (2002) Species of cyanolichens from Pseudocyphellaria with indistinguishable ITS sequences have different photobionts. New Phytologist 155: 121129.
Swofford, D. L. (2003) PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), version 4.0. Sunderland, Massachusetts: Sinauer Associates.
Takeshita, S. (2001) A taxonomic revision of the genus Trebouxia (Trebouxiophyceae, Chlorophyta). Hikobia 13: 425455.
Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 42384246.
Wagner, H. H., Holderegger, R., Werth, S., Gugerli, F., Hoebee, S. E. & Scheidegger, C. (2005) Variogram analysis of the spatial genetic structure of continuous populations using multilocus microsatellite data. Genetics 169: 17391752.
Werth, S. & Sork, V. L. (2008) Local genetic structure in a North American epiphytic lichen, Ramalina menziesii (Ramalinaceae). American Journal of Botany 95: 568576.
Werth, S. & Sork, V. L. (2010) Identity and genetic structure of the photobiont of the epiphytic lichen Ramalina menziesii on three oak species in Southern California. American Journal of Botany 97: 821830.
White, T. J., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a Guide to Methods and Applications (Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J., eds.): 315322. New York: Academic Press.
Yahr, R., Vilgalys, R. & DePriest, P. T. (2006) Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytologist 171: 847860.


Diversity of Ramalina sinensis and its photobiont in local populations



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed