Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-vzs5b Total loading time: 0.3 Render date: 2021-04-14T14:45:23.192Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Phylogenetic position of the crustose Stereocaulon species

Published online by Cambridge University Press:  09 January 2014

Filip HÖGNABBA
Affiliation:
Botanical Museum, Finnish Museum of Natural History, P.O. Box 7, FI-00014 University of Helsinki, Finland. Email: soili.stenroos@helsinki.fi
Raquel PINO-BODAS
Affiliation:
Botanical Museum, Finnish Museum of Natural History, P.O. Box 7, FI-00014 University of Helsinki, Finland. Email: soili.stenroos@helsinki.fi Departamento Biología Vegetal 1, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
Anders NORDIN
Affiliation:
Botanical Museum, Finnish Museum of Natural History, P.O. Box 7, FI-00014 University of Helsinki, Finland. Email: soili.stenroos@helsinki.fi Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden
Leena MYLLYS
Affiliation:
Botanical Museum, Finnish Museum of Natural History, P.O. Box 7, FI-00014 University of Helsinki, Finland. Email: soili.stenroos@helsinki.fi
Soili STENROOS
Affiliation:
Botanical Museum, Finnish Museum of Natural History, P.O. Box 7, FI-00014 University of Helsinki, Finland. Email: soili.stenroos@helsinki.fi
Corresponding

Abstract

Phylogenetic relationships of Stereocaulon with emphasis on the crustose taxa were studied based on nuclear ribosomal ITS1–5.8S–ITS2 and partial beta-tubulin sequences. The placement of four of the six crustose species currently included in the genus has previously been confirmed based on molecular data. It has, however, remained unresolved whether the crustose growth form is a plesiomorphic or apomorphic feature within Stereocaulon, due to contradictory placements of the crustose species in earlier studies. The aim of this study was to clarify the position of the crustose species by including additional data, especially of S. nivale and S. plicatile, which have not been included in previous analyses. The inclusion of S. plicatile in the genus is of particular interest as it is the only species in the genus with submurifrom to muriform ascospores. Altogether 37 specimens representing 31 species of the ingroup, including all the crustose Stereocaulon species, were incorporated in the analyses. Conventional, as well as direct optimization parsimony, maximum likelihood and Bayesian analyses were performed. The results show that the crustose species do not form a monophyletic entity and that the crustose growth form is a plesiomorphic feature within Stereocaulon. The crustose S. nivale and S. plicatile are nested within the genus and their inclusion in Stereocaulon is thereby confirmed. The nested position of S. plicatile indicates that the submuriform to muriform spore type has been gained independently within the genus. Here, S. plicatile is also reported for the first time from Scandinavia.

Type
Articles
Copyright
Copyright © British Lichen Society 2014 

Access options

Get access to the full version of this content by using one of the access options below.

References

Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 17921797.CrossRefGoogle ScholarPubMed
Ekman, S. & Tønsberg, T. (2002) Most species of Lepraria and Leproloma form a monophyletic group closely related to Stereocaulon . Mycological Research 106: 12621276.CrossRefGoogle Scholar
Farris, J. S., Albert, V. A., Källersjö, M., Lipscomb, D. & Kluge, A. G. (1996) Parsimony jackknifing outperforms neighbor-joining. Cladistics 12: 99124.CrossRefGoogle Scholar
Fryday, A. M. (2006) New and interesting North American lichen records from the alpine and sub-alpine zones of Mt. Katahdin, Maine. Bryologist 109: 570578.CrossRefGoogle Scholar
Fryday, A. M. & Coppins, B. J. (1996) A new crustose Stereocaulon from the mountains of Scotland and Wales. Lichenologist 28: 513519.CrossRefGoogle Scholar
Fryday, A. M. & Glew, K. A. (2003) Stereocaulon nivale, comb. nov., yet another crustose species in the genus. Bryologist 106: 565568.CrossRefGoogle Scholar
Gardes, M. & Bruns, T. D. (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113118.CrossRefGoogle ScholarPubMed
Goloboff, P. A. (1999) Analyzing large data sets in reasonable times: solutions for composite optima. Cladistics 15: 415428.CrossRefGoogle Scholar
Goloboff, P. A., Farris, J. S. & Nixon, K. C. (2008) TNT, a free program for phylogenetic analysis. Cladistics 24: 774786.CrossRefGoogle Scholar
Högnabba, F. (2006) Molecular phylogeny of the genus Stereocaulon (Stereocaulaceae, lichenized ascomycetes). Mycological Research 110: 10801092.CrossRefGoogle Scholar
Huelsenbeck, J. & Roquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754755.CrossRefGoogle ScholarPubMed
Jahns, H. M. (1970) Untersuchungen zur Entwicklungsgeschichte der Cladoniaceen unter besonderer Berücksichtigung des Podetien-Problems. Nova Hedwigia 20: 1177.Google Scholar
Jahns, H. M., Klöckner, P., Jørgensen, P. M. & Ott, S. (1995) Development of thallus and ascocarps in Stereocaulon tornense . Bibliotheca Lichenologica 58: 181190.Google Scholar
Jørgensen, P. M. & Jahns, H. M. (1987) Muhria, a remarkable new lichen genus from Scandinavia. Notes from the Royal Botanic Garden Edinburgh 44: 581599.Google Scholar
Lamb, I. M. (1951) On the morphology, phylogeny, and taxonomy of the lichen genus Stereocaulon . Canadian Journal of Botany 29: 522584.CrossRefGoogle Scholar
Lamb, I. M. (1977) A conspectus of the lichen genus Stereocaulon (Schreb.) Hoffm. Journal of the Hattori Botanical Laboratory 43: 191355.Google Scholar
Lohtander, K., Myllys, L., Sundin, R., Källersjö, M. & Tehler, A. (1998) The species pair concept in the lichen Dendrographa leucophaea (Arthoniales): analyses based on ITS sequences. Bryologist 101: 404411.CrossRefGoogle Scholar
Lumbsch, H. T. & Huhndorf, S. M. (2010) Myconet Volume 14. Part One. Outline of Ascomycota–2009. Part Two. Notes on Ascomycete Systematics. Nos. 4751–5113. Fieldiana: Life and Earth Sciences 1: 164.Google Scholar
Lutzoni, F., Kauff, F., Cox, C., McLaughlin, D., Celio, G., Dentinger, B., Padamsee, M., Hibbett, D., James, T. Y., Baloch, E. et al. (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. American Journal of Botany 91: 14461480.CrossRefGoogle ScholarPubMed
Maddison, D. R. & Maddison, W. P. (2003) MacClade 4: Analysis of Phylogeny and Character Evolution. Version 4.06. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Maddison, W. P. & Maddison, D. R. (2010) Mesquite: a modular system for evolutionary analysis. Version 2.73. http://mesquiteproject.org Google Scholar
Miądlikowska, J., Kauff, F., Hofstetter, V., Fraker, E., Grube, M., Hafellner, J., Reeb, V., Hodkinson, B. P., Kukwa, M., Lücking, R. et al. (2006) New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. Mycologia 98: 10881103.CrossRefGoogle ScholarPubMed
Myllys, L., Lohtander, K., Källersjö, M. & Tehler, A. (1999) Sequence insertions and ITS data provide congruent information on Roccella canariensis and R. tuberculata (Arthoniales, Euascomycetes) phylogeny. Molecular Phylogenetics and Evolution 12: 295309.CrossRefGoogle Scholar
Myllys, L., Lohtander, K. & Tehler, A. (2001) β-tubulin, ITS and group I intron sequences challenge the species pair concept in Physcia aipolia and P. caesia . Mycologia 93: 335343.CrossRefGoogle Scholar
Myllys, L., Högnabba, F., Lohtander, K., Thell, A., Stenroos, S. & Hyvönen, J. (2005) Phylogenetic relationships of Stereocaulaceae based on simultaneous analysis of beta-tubulin, GAPDH and SSU rDNA sequences. Taxon 54: 605618.CrossRefGoogle Scholar
Nixon, K. C. (1999) The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15: 407414.CrossRefGoogle Scholar
Nylander, J. A. A. (2004) MrModelTest 2.1. Program distributed by the author. Evolutionary Biology Centre, Uppsala University. Available at http://www.abc.se/~nylander.Google Scholar
Orange, A., James, P. W. & White, F. J. (2001) Microchemical Methods for the Identification of Lichens. London: British Lichen Society.Google Scholar
Printzen, C. & Kantvilas, G. (2004) Hertelidea, genus novum Stereocaulacearum (Ascomycetes lichensiati). Bibliotheca Lichenologica 88: 539553.Google Scholar
Purvis, O. W. & James, P. W. (1985) Lichens of the Coniston copper mines. Lichenologist 17: 221237.CrossRefGoogle Scholar
Rambaut, A. (2009) FigTree. Version 1.3.1. Institute of Evolutionary Biology, University of Edinburgh. http://tree.bio.ed.ac.uk/software/figtree Google Scholar
Rambaut, A. & Drummond, A. J. (2007) Tracer version 1.4. http://beast.bio.ed.ac.uk/Tracer.Google Scholar
Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 26882690.CrossRefGoogle ScholarPubMed
Timdal, E. (2002) Stereocaulon cumulatum comb. nov., another crustose species in the genus. Lichenologist 34: 711.CrossRefGoogle Scholar
Varón, A., Vinh, L. S., Bomash, I. & Wheeler, W. C. (2008) POY 4.1.2.1. American Museum of Natural History, New York. Documentation by Varón, A., Vinh, L. S., Bomash, I., Wheeler, W. C., Tëmkin, I., Cevasco, M., Pickett, K. M., Faivovich, J., Grant, T. & Smith, W. L. http://research.amnh.org/scicomp/projects/poy.php and http://code.google.com/p/poy4/ Google Scholar
Varón, A., Vinh, L. S. & Wheeler, W. C. (2010) POY version 4: phylogenetic analysis using dynamic homologies. Cladistics 26: 7285.CrossRefGoogle Scholar
Wheeler, W. C. (1996) Optimization alignment: the end of multiple sequence alignment in phylogenetics? Cladistics 12: 19.CrossRefGoogle Scholar
White, T. J., Bruns, T., Lee, S. B. & Taylor, J. W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J., eds): 315322. San Diego: Academic Press.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 8
Total number of PDF views: 67 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 14th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Phylogenetic position of the crustose Stereocaulon species
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Phylogenetic position of the crustose Stereocaulon species
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Phylogenetic position of the crustose Stereocaulon species
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *