Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-12T15:37:06.877Z Has data issue: false hasContentIssue false

Peltigera islandica, a new cyanolichen species in section Peltigera (‘P. canina group’)

Published online by Cambridge University Press:  27 September 2016

Department of Life and Environmental Sciences, University of Iceland, 101 Reykjavík, Iceland
Department of Biology, Duke University, Durham, NC 27708-90338, USA
UBC Herbarium, Beaty Museum, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
Department of Life and Environmental Sciences, University of Iceland, 101 Reykjavík, Iceland
Vivian P. W. MIAO*
Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada


A new cyanolichen, Peltigera islandica sp. nov. in the section Peltigera (‘P. canina group’) is described from Iceland. This species is similar in general appearance to P. rufescens and P. membranacea, but may be recognized by its downturned lobe tips and narrow lobes, respectively. Most thalli are bright emerald green in colour when moist, although a dark khaki green colourmorph is also documented. Monophyly of P. islandica s. lat. (i.e. including P. sp. A sensu O’Brien et al., from Canada) is significantly supported based on ITS sequences and corroborated by molecular synapomorphy (absence of the ITS1 hypervariable region). Analysis of the rbcLX locus indicates the cyanobiont of P. islandica (Nostoc sp.) comprises strains belonging to a pool of Icelandic genotypes, some of which are present in other Peltigera species, including P.neorufescens”, another taxon new to Iceland collected during this study. Association with photobionts that are shared by other local species suggests P. islandica may be well established in Iceland, but a review of herbarium collections as well as broader field surveys are needed to better characterize its geographical distribution.

© British Lichen Society, 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Clayden, S. R. (2010) Lichens and allied fungi of the Atlantic Maritime Ecozone. In Assessment of Species Diversity in the Atlantic Maritime Ecozone (D. F. McAlpine & I. M. Smith, eds): 153178. Ottawa: NRC Research Press.Google Scholar
Eysteinsson, T. (2013) Forestry in a Treeless Land. Egilsstaðir, Iceland: Iceland Forest Service.Google Scholar
Gaya, E., Redelings, B. D., Navarro-Rosines, P., Llimona, X., De Cáceres, M. & Lutzoni, F. (2011) Align or not to align? Resolving species complexes within the Caloplaca saxicola group as a case study. Mycologia 103: 361378.CrossRefGoogle ScholarPubMed
Glass, N. L. & Donaldson, G. C. (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61: 13231330.Google Scholar
Goffinet, B. & Bayer, R. J. (1997) Characterization of mycobionts of photomorph pairs in the Peltigerineae (lichenized ascomycetes) based on internal transcribed spacer sequences of the nuclear ribosomal DNA. Fungal Genetics and Biology 21: 228237.Google Scholar
Goffinet, B., Miadlikowska, J. & Goward, T. (2003) Phylogenetic inferences based on nrDNA sequences support five morphospecies within the Peltigera didactyla complex (lichenized Ascomycota). Bryologist 106: 349364.Google Scholar
Goward, T., Goffinet, B. & Vitikainen, O. (1995) Synopsis of the genus Peltigera (lichenized Ascomycetes) in British Columbia, with a key to the North American species. Canadian Journal of Botany 73: 91111.Google Scholar
Hainfried, E. & Schenk, A. (2013) Cyanobacterial symbioses. In The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. 2nd Edition (A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. Schleifer, eds): 38193854. New York: Springer-Verlag.Google Scholar
Han, L.-F., Zhang, Y.-Y. & Guo, S.-Y. (2013) Peltigera wulingensis, a new lichen (Ascomycota) from north China. Lichenologist 45: 329336.Google Scholar
Han, L.-F., Zheng, T.-X. & Guo, S.-Y. (2015) A new species in the lichen genus Peltigera from northern China based on morphology and DNA sequence data. Bryologist 118: 4653.CrossRefGoogle Scholar
Hansen, E. S. (2009) A contribution to the lichen flora of Iceland. Folia Cryptogamica Estonica 46: 4554.Google Scholar
Hasegawa, M., Kishino, H. & Yano, T. (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22: 160174.Google Scholar
Kirk, P. M., Cannon, P. F., Minter, D. W. & Stalpers, J. A. (2008) Dictionary of the Fungi. Wallingford, UK: CABI.Google Scholar
Kristinsson, H. & Heiðmarsson, S. (2009) Checklist of lichens in Iceland. Scholar
Kristinsson, H., Heiðmarsson, S. & Hansen, E. S. (2014) Lichens from Iceland in the collection of Svanhildur Svane [Islandijos kerpes Svanhildur Svane kolekcijoje]. Botanica Lithuanica 20: 1418.Google Scholar
Li, L. A. & Tabita, R. (1997) Maximum activity of recombinant ribulose 1,5-bisphosphate carboxylase/oxygenase of Anabaena sp. strain CA requires the product of the rbcX gene. Journal of Bacteriology 179: 37933796.Google Scholar
Louwhoff, S. H. J. J. (2009) Peltigera. In Flora of Australia Vol. 57 Lichens 5. Victoria: CSIRO Publishing/ Australian Biological Resources Study (ABRS). Scholar
Lutzoni, F., Wagner, P., Reeb, V. & Zoller, S. (2000) Integrating ambiguously aligned regions of DNA sequences in phylogenetic analyses without violating positional homology. Systematic Biology 49: 628651.CrossRefGoogle ScholarPubMed
Maddison, D. R. & Maddison, W. P. (2003) MacClade: Analysis of Phylogeny and Character Evolution, version 4.07. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Manoharan, S. S., Miao, V. P. W. & Andrésson, O. S. (2012) LEC-2, a highly variable lectin in the lichen. Symbiosis 58: 9198.Google Scholar
Martinez, I., Burgaz, A. R., Vitikainen, O. & Escudero, A. (2003) Distribution patterns in the genus Peltigera Willd. Lichenologist 35: 301323.Google Scholar
Matheny, P. B., Liu, Y. J., Ammirati, J. F. & Hall, B. D. (2002) Using RPB1 sequences to improve phylogenetic inference among mushrooms (Inocybe, Agaricales). American Journal of Botany 89: 688698.Google Scholar
Miadlikowska, J. & Lutzoni, F. (2000) Phylogenetic revision of the genus Peltigera (lichen-forming Ascomycota) based on morphological, chemical, and large subunit nuclear ribosomal DNA data. International Journal of Plant Sciences 161: 925958.Google Scholar
Miadlikowska, J. & Lutzoni, F. (2004) Phylogenetic classification of peltigeralean fungi (Peltigerales, Ascomycota) based on ribosomal RNA small and large subunits. American Journal of Botany 91: 449464.Google Scholar
Miadlikowska, J., Lutzoni, F., Goward, T., Zoller, S. & Posada, D. (2003) New approach to an old problem: incorporating signal from gap-rich regions of ITS and rDNA large subunit into phylogenetic analyses to resolve the Peltigera canina species complex. Mycologia 95: 11811203.CrossRefGoogle Scholar
Miadlikowska, J., Richardson, D., Magain, N., Ball, B., Anderson, F., Cameron, R., Lendemer, J., Truong, C. & Lutzoni, F. (2014 a) Phylogenetic placement, species delimitation, and cyanobiont identity of endangered aquatic Peltigera species (lichen-forming Ascomycota, Lecanoromycetes). American Journal of Botany 101: 11411156.CrossRefGoogle ScholarPubMed
Miadlikowska, J., Kauff, F., Hognabba, F., Oliver, J. C., Molnar, K., Fraker, E., Gaya, E., Hafellner, J., Hofstetter, V., Gueidan, C. et al. (2014 b) A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Molecular Phylogenetics and Evolution 79: 132168.Google Scholar
Miao, V. P. W., Rabenau, A. & Lee, A. (1997) Cultural and molecular characterization of photobionts of Peltigera membranacea . Lichenologist 29: 571586.CrossRefGoogle Scholar
Miller, M. A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010, New Orleans, Louisiana, pp. 1–8.Google Scholar
Monacell, J. T. & Carbone, I. (2014) Mobyle SNAP Workbench: a web-based analysis portal for population genetics and evolutionary genomics. Bioinformatics 30: 14881490.Google Scholar
Nash, T. H. III, (2008) Lichen Biology, 2nd Edition. Cambridge: Cambridge University Press.Google Scholar
Nylander, J. A. A. (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.Google Scholar
O’Brien, H. E., Miadlikowska, J. & Lutzoni, F. (2009) Assessing reproductive isolation in highly diverse communities of the lichen-forming fungal genus Peltigera . Evolution 63: 20762086.Google Scholar
O’Brien, H. E., Miadlikowska, J. & Lutzoni, F. (2013) Assessing population structure and host specialization in lichenized cyanobacteria. New Phytologist 198: 557566.CrossRefGoogle ScholarPubMed
Orange, A., James, P. W. & White, F. J. (2001) Microchemical Methods for the Identification of Lichens. London: British Lichen Society.Google Scholar
Otalora, M. A., Martinez, I., O’Brien, H., Molina, M. C., Aragon, G. & Lutzoni, F. (2010) Multiple origins of high reciprocal symbiotic specificity at an intercontinental spatial scale among gelatinous lichens (Collemataceae, Lecanoromycetes). Molecular Phylogenetics and Evolution 56: 10891095.Google Scholar
Papaefthimiou, D., Hrouzek, P., Mugnai, M. A., Lukesova, A., Turicchia, S., Rasmussen, U. & Ventura, S. (2008) Differential patterns of evolution and distribution of the symbiotic behaviour in nostocacean cyanobacteria. International Journal of Systematic and Evolutionary Microbiology 58: 553564.Google Scholar
Ramirez-Fernandez, L., Zuniga, C., Mendez, M. A., Caru, M. & Orlando, J. (2013) Genetic diversity of terricolous Peltigera cyanolichen communities in different conservation states of native forest from southern Chile. International Microbiology 16: 243252.Google ScholarPubMed
Redelings, B. D. & Suchard, M. A. (2005) Joint Bayesian estimation of alignment and phylogeny. Systematic Biology 54: 401418.CrossRefGoogle ScholarPubMed
Redelings, B. D. & Suchard, M. A. (2007) Incorporating indel information into phylogeny estimation for rapidly emerging pathogens. BMC Evolutionary Biology 7: 40.Google Scholar
Rikkinen, J. (2003) Ecological and evolutionary role of photobiont-mediated guilds in lichens. Symbiosis 34: 99110.Google Scholar
Rikkinen, J., Oksanen, I. & Lohtander, K. (2002) Lichen guilds share related cyanobacterial symbionts. Science 297: 357.Google Scholar
Rodriguez, F., Oliver, J. L., Marin, A. & Medina, J. R. (1990) The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142: 485501.Google Scholar
Rudi, K., Skulberg, O. M. & Jakobsen, K. S. (1998) Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. Journal of Bacteriology 180: 34533461.Google Scholar
Seaward, M. R. D. (ed.) (1977) Lichen Ecology. London: Academic Press.Google Scholar
Scheidegger, C. (1995) Reproductive strategies in Vezdaea (Lecanorales, lichenized Ascomycetes): a low-temperature scanning electron microscopy study of a ruderal species. Cryptogamic Botany 5: 163171.Google Scholar
Sérusiaux, E., Goffinet, B., Miadlikowska, J. & Vitikainen, O. (2009) Taxonomy, phylogeny and biogeography of the lichen genus Peltigera in Papua New Guinea. Fungal Diversity 38: 185224.Google Scholar
Sigurðsson, H. M. L. (1993) Öskjuhlíð, Náttúra og Saga. Reykjaví́kur, Iceland: Árbæjarsafn og Borgarskipulag.Google Scholar
Sinnemann, S. J., Andresson, O. S., Brown, D. W. & Miao, V. P. W. (2000) Cloning and heterologous expression of Solorina crocea pyrG . Current Genetics 37: 333338.CrossRefGoogle ScholarPubMed
Sliwa, L., Miadlikowska, J., Redelings, B. D., Molnar, K. & Lutzoni, F. (2012) Are widespread morphospecies from the Lecanora dispersa group (lichen-forming Ascomycota) monophyletic? Bryologist 115: 265277.CrossRefGoogle Scholar
Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 26882690.Google Scholar
Stamatakis, A., Hoover, P. & Rougemont, J. (2008) A rapid bootstrap algorithm for the RAxML Web servers. Systematic Biology 57: 758771.Google Scholar
Stiller, J. W. & Hall, B. D. (1997) The origin of red algae: implications for plastid evolution. Proceedings of the National Academy of Sciences of the United States of America 94: 45204525.Google Scholar
Suchard, M. A. & Redelings, B. D. (2006) BAli-Phy: simultaneous Bayesian inference of alignment and phylogeny. Bioinformatics 22: 20472048.Google Scholar
Timling, I., Walker, D. A., Nusbaum, C., Lennon, N. J. & Taylor, D. L. (2014) Rich and cold: diversity, distribution and drivers of fungal communities in patterned-ground ecosystems of the North American Arctic. Molecular Ecology 23: 32583272.Google Scholar
Topham, P. B. (1977) Colonization, growth, succession and competition. In Lichen Ecology (M. R. D. Seaward, ed.): 3168. London: Academic Press.Google Scholar
Turner, S., Pryer, K. M., Miao, V. P. W. & Palmer, J. D. (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. Journal of Eukaryotic Microbiology 46: 327338.Google Scholar
Vitikainen, O. (1994) Taxonomic revision of Peltigera (lichenized Ascomycotina) in Europe. Acta Botanica Fennica 152: 196.Google Scholar
Vitikainen, O. (2006) Peltigera tartarea, a new species from Arctic America. Journal of the Hattori Botanical Laboratory 100: 853854.Google Scholar
White, T., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (M. A. Innis, D. H. Gelfand, J. J. Sninsky & T. J. White, eds): 315322. San Diego: Academic Press.Google Scholar
Wilgenbusch, J. C., Warren, D. L. & Swofford, D. L. (2004) AWTY: a system for graphical exploration of MCMC convergence in Bayesian phylogenetic inference. Scholar