Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-22T19:04:58.484Z Has data issue: false hasContentIssue false

A new riparian species of Ramalina (Ramalinaceae) from Brazil, with a key to neotropical saxicolous species

Published online by Cambridge University Press:  26 September 2018

Emerson Luiz GUMBOSKI
Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Agronomia, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil. Email:
Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, 81531-980 Curitiba, Paraná, Brazil
Mayara Camila SCUR
Laboratório de Evolução e Biodiversidade, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, 79070-900 Campo Grande, Mato Grosso do Sul, Brazil
Aline Pedroso LORENZ-LEMKE
Laboratório de Evolução e Biodiversidade, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, 79070-900 Campo Grande, Mato Grosso do Sul, Brazil
Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Agronomia, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil. Email:


The new species Ramalina fleigiae from Brazil is described growing on rocks in riverbeds in high altitude grasslands of southern Brazil. It grows in areas with constant water flow, sometimes almost immersed, and always in exposed habitats. Through an integrative approach, the detailed description of R. fleigiae includes morphological, anatomical, ecological, chemical and molecular data. Ribosomal DNA-based phylogenies suggest that R. fleigiae is more closely related to a species that shares its habitat preference (R. laevigata) than to the morphologically and chemically similar R. exiguella and R. gracilis. Ramalina fleigiae and R. laevigata can be distinguished by thallus morphology (irregularly flat branches in R. fleigiae vs. flat to canaliculate in R. laevigata) and pattern of chondroid tissue, as genetic distances between them are compatible with the interspecific range. It is possible that many species of Ramalina still remain hidden within the morphological or chemical variation of currently accepted species. Combining ecological, anatomical and molecular data will improve our future understanding of this genus.

© British Lichen Society, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Aptroot, A. (2008) Lichens of St Helena and Ascension Island. Botanical Journal of the Linnean Society 158: 147171.Google Scholar
Aptroot, A. & Bungartz, F. (2007) The lichen genus Ramalina on the Galapagos. Lichenologist 36: 519542.Google Scholar
Aptroot, A. & Schumm, F. (2008) Key to Ramalina species known from Atlantic islands, with two new species from the Azores. Sauteria 15: 2157.Google Scholar
Behling, H., Pillar, V. D., Orlóci, L. & Bauermann, S. G. (2004) Late Quaternary Araucaria forest, grassland (Campos), fire and climate dynamics, studied by high-resolution pollen, charcoal and multivariate analysis of the Cambará do Sul core in southern Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 203: 277297.Google Scholar
Boldrini, I. I. (1997) Campos do Rio Grande do Sul: caracterização fisionômica e problemática ocupacional. Boletim do Instituto de Biociências/UFRGS 56: 139.Google Scholar
Calvelo, S. & Liberatore, S. (2002) Catálogo de los líquenes de la Argentina [Checklist of Argentinean Lichens]. Kurtziana 29: 7170.Google Scholar
Cubero, O. F., Crespo, A., Fatehi, J. & Bridge, P. D. (1999) DNA extraction and PCR amplification method suitable for fresh, herbarium-stored, lichenized, and other fungi. Plant Systematics and Evolution 216: 243249.Google Scholar
Culberson, W. L. (1967) Analysis of chemical and morphological variation in the Ramalina siliquosa complex. Brittonia 19: 333352.Google Scholar
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772.Google Scholar
Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 19691973.Google Scholar
Fleig, M. (1988) Liquens da Estação Ecológica do Taim, Rio Grande, RS, Brasil. Napaea 6: 916.Google Scholar
Fletcher, A., James, P. W & Purvis, O. W. (2009) Ramalina. In The Lichens of Great Britain and Ireland (C. W. Smith, A. Aptroot, B. J. Coppins, A. Fletcher, O. L. Gilbert, P. W. James & P. A. Wolseley, eds): 781787. London: British Lichen Society.Google Scholar
Fries, E. (1825) Systema Orbis Vegetabilis. Pars I. Plantae Homonemeae. Lund: E Typographia Academica.Google Scholar
Gardes, M. & Bruns, T. D. (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113118.Google Scholar
Grassi, M. M. (1950) Contribución al catálogo de líquenes argentinos, I. Lilloa 24: 5296.Google Scholar
Groner, U. & LaGreca, S. (1997) The ‘Mediterranean’ Ramalina panizzei north of the Alps: morphological, chemical and rDNA sequence data. Lichenologist 29: 441454.Google Scholar
Guindon, S. & Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696704.Google Scholar
Gumboski, E. L. (2016) Estudos taxonômicos em espécies de Ramalina Ach. (Ascomycota liquenizados, Ramalinaceae). Ph.D. thesis, Universidade Federal do Rio Grande do Sul.Google Scholar
Hayward, G. C., Blanchon, D. J. & Lumbsch, H. T. (2014) Molecular data support Ramalina ovalis as a distinct lineage (Ramalinaceae, Ascomycota). Lichenologist 46: 553561.Google Scholar
Huneck, S. & Yoshimura, I. (1996) Identification of Lichen Substances. Berlin, Heidelberg: Springer-Verlag.Google Scholar
IBGE – Instituto Brasileiro de Geografia e Estatística (2004) Biomas Continentais do Brasil. Mapa Temático 1:5.000.000.Google Scholar
Jørgensen, P. M. (1977) Foliose and fruticose lichens from Tristan da Cunha. Skrifter av det Norske Videnskaps Akademi i Oslo I Matematisk Naturvidenskapelig Klasse 36: 140.Google Scholar
Kashiwadani, H. (1986) Genus Ramalina (lichens) in Japan (1). On Ramalina calicaris (L.) Fr. in Japan. Bulletin of the National Science Museum, Tokyo, Series B 12: 8998.Google Scholar
Kashiwadani, H. (1987) Peruvian species of Ramalina (lichens). In Studies on Cryptogams in Southern Peru (H. Inoue, ed.): 129144. Tokyo: Tokai University Press.Google Scholar
Kashiwadani, H. (1992) Ramalina siliquosa (Huds.) A. L. Sm. and R. subbreviuscula Asha. in Japan. Memoirs of the National Science Museum, Tokyo 25: 6369.Google Scholar
Kashiwadani, H. & Kalb, K. (1993) The genus Ramalina in Brazil. Lichenologist 25: 131.Google Scholar
Kashiwadani, H. & Nash, T. H. III, (2004) Ramalina. In Lichen Flora of the Greater Sonoran Desert Region, Vol. 2. (T. H. Nash III, B. D. Ryan, P. Diederich, C. Gries & F. Bungartz, eds): 440455. Tempe, Arizona: Lichens Unlimited, Arizona State University.Google Scholar
Kashiwadani, H., Moon, K. H. & Lai, M. J. (2006) The genus Ramalina (Ascomycotina: Ramalinaceae) in Taiwan. Memoirs of the National Science Museum, Tokyo 44: 161173.Google Scholar
Kashiwadani, H., Nash, T. H. III & Moon, K. H. (2007) Two new species of the genus Ramalina (Ascomycotina: Ramalinaceae) from South America. Bibliotheca Lichenologica 95: 335340.Google Scholar
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 30593066.Google Scholar
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., et al. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 16471649.Google Scholar
Köppen, W. (1936) Das geographische System der Klimate. In Handbuch der Klimatologie (W. Köppen & R. Geiger, eds): 144. Berlin: Gebrüder Borntraeger.Google Scholar
Krog, H. (1990) New Ramalina species from Porto Santo, Madeira. Lichenologist 22: 241247.Google Scholar
Krog, H. & James, P. W. (1977) The genus Ramalina in Fennoscandia and the British Isles. Norwegian Journal of Botany 24: 1543.Google Scholar
Krog, H. & Østhagen, H. (1980) The genus Ramalina in the Canary Islands. Norwegian Journal of Botany 27: 255296.Google Scholar
Malme, G. O. A. (1934) Die Ramalinen der ersten Regnellschen Expedition. Arkiv för Botanik 26A: 112.Google Scholar
Marcano, V. & Morales Méndez, A. (1994) New species of Ramalina from Venezuela. Bryologist 97: 2633.Google Scholar
Moreno, J. A. (1961) Clima do Rio Grande do Sul. Porto Alegre, Rio Grande do Sul: Secretaria da Agricultura.Google Scholar
Naesborg, R. R. (2008) Taxonomic revision of the Lecania cyrtella group based on molecular and morphological evidence. Mycologia 100: 397416.Google Scholar
Nylander, W. (1870) Recognitio monographica Ramalinarum. Bulletin de la Société Linnéenne de Normandie 4: 101181.Google Scholar
Ohmura, Y., Moon, K. H. & Kashiwadani, H. (2008) Morphology and molecular phylogeny of Ramalina pollinaria, R. sekika and R. yasudae (Ramalinaceae, lichenized Ascomycotina). Journal of Japanese Botany 83: 156164.Google Scholar
Orange, A., James, P. W. & White, F. J. (2001) Microchemical Methods for the Identification of Lichens. London: British Lichen Society.Google Scholar
Osorio, H. S. (1972) Contribution to the lichen flora of Uruguay. VII. A preliminary catalogue. Comunicaciones Botánicas, Museo de Historia Natural y Anthroplogía (Montevideo) 4: 146.Google Scholar
Pérez-Vargas, I. & Pérez-Ortega, S. (2014) A new endemic Ramalina species from the Canary Islands (Ascomycota, Lecanorales). Phytotaxa 159: 269278.Google Scholar
Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. (2012) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21: 18641877.Google Scholar
Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. (2014) Tracer v1.6. Available at: Scholar
Rambo, B. (1953) História da flora do planalto riograndense. Anais Botânicos do Herbário ‘Barbosa Rodrigues’ 5: 185232.Google Scholar
Rundel, P. W. (1978) Evolutionary relationships in the Ramalina usnea complex. Lichenologist 10: 141156.Google Scholar
Sérusiaux, E., van den Boom, P. & Ertz, D. (2010) A two-gene phylogeny shows the lichen genus Niebla (Lecanorales) is endemic to the New World and does not occur in Macaronesia nor in the Mediterranean basin. Fungal Biology 114: 528537.Google Scholar
Sheard, J. W. & James, P. W. (1976) Typification of the taxa belonging to the Ramalina siliquosa species aggregate. Lichenologist 8: 3546.Google Scholar
Spielmann, A. A. (2006) Checklist of lichens and lichenicolous fungi of Rio Grande do Sul (Brazil). Caderno de Pesquisa Série Biologia 18: 7125.Google Scholar
Stevens, G. N. (1987) The lichen genus Ramalina in Australia. Bulletin of the British Museum (Natural History), Botany Series 16: 107223.Google Scholar
Swofford, D. L. (2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Sunderland, Massachusetts: Sinauer Associates.Google Scholar
White, T. J., Bruns, T. D., Lee, S. B. & Taylor, J. W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (M. A. Innis, D. H. Gelfand, J. J. Sninsky & T. J. White, eds): 315322. San Diego: Academic Press.Google Scholar
Wirtz, N., Printzen, C. & Lumbsch, H. T. (2008) The delimitation of Antarctic and bipolar species of neuropogonoid Usnea (Ascomycota, Lecanorales): a cohesion approach of species recognition for the Usnea perpusilla complex. Mycological Research 112: 472484.Google Scholar