Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-16T15:48:48.076Z Has data issue: false hasContentIssue false

Didymocyrtis trassii sp. nov. and other lichenicolous fungi on Cetraria aculeata

Published online by Cambridge University Press:  26 September 2018

Alexander Khodosovtsev*
Kherson State University, 27, 40 Universitetska Str., Kherson 73000, Ukraine.
Valeriy Darmostuk
Kherson State University, 27, 40 Universitetska Str., Kherson 73000, Ukraine.
Ave Suija
Institute of Ecology and Earth Sciences, University of Tartu, Lai Street 40 51005, Tartu, Estonia
Alexander Ordynets
Department of Ecology, FB 10, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany
(corresponding author): Email:


Recently, nine species of lichenicolous fungi were found growing on Cetraria aculeata (Parmeliaceae) in a sand dune system in the Ukraine. One of them, Didymocyrtis trassii, is described here as new to science. This species is similar to D. pseudeverniae but differs in having smaller pycnidia, smaller obpyriform to clavate conidia as well as its DNA sequence. The new monotypic lichenicolous genus Katherinomyces is described here. Acremonium lichenicola s. l., Eonema pyriforme, Didymocyrtis cladoniicola and Lichenoconium erodens are reported for the first time on Cetraria aculeata. Furthermore, E. pyriforme is reported for the first time from lichen thalli. Acremonium lichenicola, E. pyriforme and Taeniolella rolfii are new for the mycobiota of the Ukraine. A key to the eleven known lichenicolous species on Cetraria aculeata is provided.

© British Lichen Society, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Abarenkov, K., Tedersoo, L., Nilsson, R. H., Vellak, K., Saar, I., Veldre, V., Parmasto, E., Prous, M., Aan, A., Ots, M. et al. (2010) PlutoF – a web-based workbench for ecological and taxonomic research, with an online implementation for fungal ITS sequences. Evolutionary Bioinformatics 6: 189196.Google Scholar
Akaike, H. (1973) Information theory and an extension of the maximum likelihood principle. In Proceedings of the 2nd International Symposium on Information Theory (B. N. Petrov & F. Csáki, eds): 267281. Budapest: Akadémiai Kiadó.Google Scholar
Aptroot, A., Diederich, P., Sérusiaux, E. & Sipman, H. J. M. (1997) Lichens and lichenicolous fungi from New Guinea. Bibliotheca Lichenologica 64: 1220.Google Scholar
Beck, A., Peršoh, D. & Rambold, G. (2014) First evidence for seasonal fluctuations in lichen- and bark-colonising fungal communities. Folia Microbiologica 59: 155157.Google Scholar
Bengtsson-Palme, J., Veldre, V., Ryberg, M., Hartmann, M., Branco, S., Wang, Z., Godhe, A., Bertrand, Y., De Wit, P., Sanchez, M. et al. (2013) ITSx: improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for use in environmental sequencing. Methods in Ecology and Evolution 4: 914919.Google Scholar
Bernicchia, A. & Gorjón, S. P. (2010) Corticiaceae s.l. Fungi Europaei Vol. 12. Origgio: Candusso Edizione.Google Scholar
Brackel, W. von (2011) Lichenopeltella rangiferinae sp. nov. and some other lichenicolous fungi from Iceland. Acta Botanica Islandica 15: 5160.Google Scholar
Brackel, W. von (2015) Lichenicolous fungi from Central Italy with notes on some remarkable hepaticolous, algicolous and lichenized fungi. Herzogia 28: 212281.Google Scholar
Christiansen, M. P. (1960) Danish resupinate fungi. Part II. Homobasidiomycetes. Dansk Botanisk Arkiv 19: 57388.Google Scholar
Diederich, P. & Zhurbenko, M. (1997) Taeniolella rolfii sp. nov., a new lichenicolous hyphomycete from the Siberian Arctic. Symbolae Botanicae Upsalienses 32: 1116.Google Scholar
Diederich, P. & Zhurbenko, M. (2001) Nomenclatural notes on Taeniolella rolfii (lichenicolous hyphomycetes). Graphis Scripta 12: 3740.Google Scholar
Diederich, P., Kocourková, J., Etayo, J. & Zhurbenko, M. (2007) The lichenicolous Phoma species (coelomycetes) on Cladonia . Lichenologist 39: 153163.Google Scholar
Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 17921797.Google Scholar
Eriksson, J. & Ryvarden, L. (1973) The Corticiaceae of North Europe Vol. 2. Oslo: Fungiflora.Google Scholar
Ertz, D., Diederich, P., Lawrey, J. D., Berger, F., Freebury, C. E., Coppins, B., Gardiennet, A. & Hafellner, J. (2015) Phylogenetic insights resolve Dacampiaceae (Pleosporales) as polyphyletic: Didymocyrtis (Pleosporales, Phaeosphaeriaceae) with Phoma-like anamorphs resurrected and segregated from Polycoccum (Trypetheliales, Polycoccaceae fam. nov.). Fungal Diversity 74: 5389.Google Scholar
Etayo, J. & Diederich, P. (1996) Lichenicolous fungi from the western Pyrenees, France and Spain. II. More deuteromycetes. Mycotaxon 60: 415428.Google Scholar
Fernández-Mendoza, F., Domaschke, S., García, M. A., Jordan, P., Martin, M. P. & Printzen, C. (2011) Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata . Molecular Ecology 20: 12081232.Google Scholar
Gilbert, O. L. (1988) Studies on the destruction of Lecanora conizaeoides by the lichenicolous fungus Athelia arachnoidea . Lichenologist 20: 183190.Google Scholar
Gouy, M., Guindon, S. & Gascuel, O. (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution 27: 221224.Google Scholar
Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59: 307321.Google Scholar
Hawksworth, D. L. (1977) Taxonomic and biological observations on the genus Lichenoconium (Sphaeropsidales). Persoonia 9: 159198.Google Scholar
Hawksworth, D. L. (1981) The lichenicolous Coelomycetes. Bulletin of the British Museum (Natural History). Botany Series 9: 198.Google Scholar
Hawksworth, D. L. (2003) The lichenicolous fungi of Great Britain and Ireland: an overview and annotated checklist. Lichenologist 35: 191232.Google Scholar
Jülich, W. (1972) Monographie der Athelieae (Corticiaceae, Basidiomycetes). Willdenowia 7: 1283.Google Scholar
Khodosovtsev, A. Ye. & Darmostuk, V. V. (2017) Zwackhiomyces polischukii sp. nov., and other noteworthy lichenicolous fungi from Ukraine. Polish Botanical Journal 62: 2735.Google Scholar
Khodosovtsev, A. Ye., Gavrylenko, L. M. & Klymenko, V. M. (2016) Katherinomyces cetrariae gen. et sp. nov. (asexual Ascomycota) and Sphaerellothecium aculeatae sp. nov. (Mycosphaerellaceae), new lichenicolous fungi on Cetraria aculeata in Ukraine. Nova Hedwigia 103: 4755.Google Scholar
Khodosovtsev, O. Ye., Boіko, M. F., Nadyeina, O. V. & Khodosovtseva, Yu. A. (2011) Lichen and bryophyte associations on the lower Dnieper sand dunes: syntaxonomy and weathering indication. Chornomorski Botanical Journal 7: 4466.Google Scholar
Kõljalg, U., Nilsson, R. H., Abarenkov, K., Tedersoo, L., Taylor, A., Bahram, M., Bates, S., Bruns, T., Bengtsson-Palme, J., O’Callaghan, T. et al. (2013) Towards a unified paradigm for sequence-based identification of Fungi. Molecular Ecology 22: 52715277.Google Scholar
Kukwa, M., Czarnota, P. & Perz, P. (2010) New or interesting records of lichenicolous fungi from Poland VIII. Herzogia 23: 111119.Google Scholar
Kukwa, M., Kowalewskà, A., Śliwa, L., Czarnota, P., Czyżewska, K., Flakus, A., Kubiak, D., Wilk, K., Dimos-Zychm, M., Kolanko, K. et al. (2012) Lichens and lichenicolous fungi of the Wdzydzki Landscape Park (Pomorze Gdańskie, N Poland). Acta Botanica Cassubica 11: 77105.Google Scholar
Larsson, K.-H. (2007) Re-thinking the classification of corticioid fungi. Mycological Research 111: 10401063.Google Scholar
Lawrey, J. D., Lücking, R., Sipman, H. J. M., Chaves, J. L., Redhead, S. A., Bungartz, F., Sikaroodi, M. & Gillevet, P. M. (2009) High concentration of basidiolichens in a single family of agaricoid mushrooms (Basidiomycota: Agaricales: Hygrophoraceae). Mycological Research 113: 11541171.Google Scholar
Lawrey, J. D., Diederich, P., Nelsen, M. P., Freebury, C., Van den Broeck, D., Sikaroodi, M. & Ertz, D. (2012) Phylogenetic placement of lichenicolous Phoma species in the Phaeosphaeriaceae (Pleosporales, Dothideomycetes. Fungal Diversity 55: 195213.Google Scholar
Lutsak, T., Fernández-Mendoza, F., Nadyeina, O., Şenkardeşler, A. & Printzen, C. (2017) Testing the correlation between norstictic acid content and species evolution in the Cetraria aculeata group in Europe. Lichenologist 49: 3956.Google Scholar
McNeill, J., Barrie, F. R., Buck, W. R., Demoulin, V., Greuter, W., Hawksworth, D. L., Herendeen, P. S., Knapp, S., Marhold, K., Prado, J. et al. (2012) International Code of Nomenclature for Algae, Fungi and Plants (Melbourne Code) (Regnum Vegetabile 154). Königstein: Koeltz Scientific Books.Google Scholar
Miller, M. A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010, New Orleans, Louisiana, pp. 1–8.Google Scholar
Nadyeina, O., Lutsak, T., Blum, O., Grakhov, V. & Scheidegger, C. (2013) Cetraria steppae Savicz is conspecific with Cetraria aculeata (Schreb.) Fr. according to morphology, secondary chemistry and ecology. Lichenologist 45: 841856.Google Scholar
Posada, D. (2008) jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 12531256.Google Scholar
Printzen, C., Fernández-Mendoza, F., Muggia, L., Berg, G. & Grube, M. (2012) Alphaproteobacterial communities in geographically distant populations of the lichen Cetraria aculeata . FEMS Microbiology Ecology 82: 316325.Google Scholar
Printzen, C., Domaschke, S., Fernández-Mendoza, F. & Pérez-Ortega, S. (2013) Biogeography and ecology of Cetraria aculeata, a widely distributed lichen with a bipolar distribution. MycoKeys 6: 3353.Google Scholar
Rambaut, A. (2014) FigTree v.1.4.2. Available at: Scholar
Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. (2014) Tracer v.1.6. Available at: .uk/software/tracer/.Google Scholar
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539542.Google Scholar
Suija, A. (2005) Lichenicolous fungi and lichens in Estonia I. Ascomycota. Nova Hedwigia 80: 247267.Google Scholar
Tedersoo, L., Jairus, T., Horton, B. M., Abarenkov, K., Suvi, T., Saar, I. & Kõljalg, U. (2008) Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytologist 180: 479490.Google Scholar
White, T. J., Bruns, T. D., Lee, S. B. & Taylor, J. W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a Guide to Methods and Applications (M. A. Innis, D. H. Gelfand, J. J. Sninsky & T. J. White, eds): 315322. New York: Academic Press.Google Scholar
Váczi, P. & Hawksworth, D. L. (2001) Polycoccum crespoae sp. nov., the first report of a lichenicolous fungus on Chondropsis semiviridis (Parmeliaceae). Lichenologist 33: 513517.Google Scholar
Zhurbenko, M. P. (2009) Lichenicolous fungi and some lichens from the Holarctic. Opuscula Philolichenum 6: 87120.Google Scholar