Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-22T01:01:42.512Z Has data issue: false hasContentIssue false

An Interdisciplinary Perspective on the Origin of Maize

Published online by Cambridge University Press:  20 January 2017

Mary W. Eubanks*
Affiliation:
Department of Biology, Duke University, Durham, NC 27708-0338

Abstract

This paper addresses objections raised in an article by Bennetzen et al. (2000) in response to MacNeish and Eubanks (2000). Bennetzen et al. interpret the findings reported by MacNeish and Eubanks as opposition to the teosinte hypothesis for the origin of maize. However, by demonstrating a mutagenic mechanism that could have generated the genetic diversity essential for the transition from teosinte to maize, and the subsequent explosive evolution of maize in the archaeological record, the Tripsacum-diploperennis introgression derivatives confirm that teosinte is a progenitor of maize. Although Bennetzen et al. claim that the Tripsacum- diploperennis crosses are not credible, DNA fingerprinting verified that the hybrids contain genes from their teosinte and Tripsacum parents. Archaeobotanical remains of teosinte, Tripsacum, and hybrid specimens have been reported from Tamaulipas and Oaxaca. One of the "hybrid" specimens from Tamaulipas is virtually identical to an experimental Tripsacum-diploperennis segregate. The ability to experimentally reproduce forms that closely resemble archaeological specimens lends compelling support to the hypothesis that intergeneric hybridzation gave rise to the mutations that, through human selection, transformed teosinte into domesticated maize.

Resumen

Resumen

Este artículo discute las objeciones en el artículo por Bennetzen et al. (2000) en el cual responden a MacNeish y Eubanks (2000). Bennetzen et al. mantienen que los hallazgos de MacNeish y Eubanks no apoyan a la hipótesis que considera teosinte como el progenitor del maíz. Pero, al demostrar un mecanismo de los pasos de transición del progenitor teosinte al maíz domesticado, los híbridos Tripsacum-diploperennis confirman que teosinte es un antepasado del maíz. Aunque Bennetzen et al. creen que los híbridos Tripsacum-diploperennis no son creíbles, la comprobación de DNA comprueba que los híbridos tienen los genes de los padres, teosinte y Tripsacum. Los restos arqueobotánicos de teosinte, Tripsacum, y los híbridos (que son virtualmente idénticos a algunas segregaciones experimentales de Tripsacum-diploperennis F2) apoyan a la hipótesis que sugiere que una híbridación entre teosinte y Tripsacum produció las mutaciones que, con la ayuda de los humanos, transformaron el teosinte al maíz domesticado. Esta evidencia experimental nueva apoya a la hipótesis que mantiene que teosinte fue un antepasado del maíz domesticado.

Type
Comments
Copyright
Copyright © Society for American Archaeology 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Beadle, George W. 1939 Teosinte and the Origin of Maize. Journal of Heredity 30:245247.Google Scholar
Beadle, George W. 1980 The Ancestry of Com. Scientific American 242:112119.Google Scholar
Belousova, N. I. 1970 Hybridization of Maize with Tripsacum in Relation to the Problem of Experimental Induction of Apomixis in Maize. In Apomixis and Breeding, edited by S. S. Kholchlov, pp. 199204. Amerind Publishing Co. Pvt., Ltd.Google Scholar
Berthaud, J., Savidan, Y., Barré, M., and Leblanc, O. 1997 B. Tripsacum . In Biodiversity in Trust., edited by D. Fuccillo, L. Sears, and P. Stapleton, pp. 227233. Cambridge University Press, Cambridge.Google Scholar
Blakey, C. A. 1993 A Molecular Map of Tripsacum dactyloides, Eastern Gamagrass. Unpublished Ph.D. dissertation, Genetics Area Program, University of Missouri, Columbia.Google Scholar
Brink, D. and de Wet, J. M. J. 1983 Supraspecific Groups in Tripsacum (Gramineae). Systematic Botany 8:243249.Google Scholar
Buckler, Edward S. IV, and Holtsford, Timothy P. 1996 Zea systematics: Ribosomal ITS evidence. Molecular Biology and Evolution 13:612622.Google Scholar
Chaganti, R. S. K. 1965 Cytogenetic Studies of Maize-Tripsacum Hybrids and Their Derivatives. Bussey Institution of Harvard University, Cambridge, MA.Google Scholar
Chetelat, R. T., Rick, C. M., DeVerna, J. W. 1989 Isozyme Analysis, Chromosome Pairing, and Fertility of Lycopersicon esculentum Solanum lycopersicoides Diploid Backcross Hybrids. Genome 32:783790.Google Scholar
Davies, A., Jenkins, G., and Rees, H. 1990 Chromosome Elimination in Inter-specific Hybrids. Chromosoma 99:289295.Google Scholar
de Wet, J. M. J., Brink, D. E., and Cohen, C. E. 1983 Systematics of Tripsacum Section Facsiculata (Gramineae). American Journal of Botany 70:11391146.Google Scholar
de Wet, J. M. J., Gray, J. R., and Harlan, J. R. 1976 Systematics of Tripsacum (Gramineae). Phytologia 33:203227.Google Scholar
Dewald, C. L., Burson, B. L., De Wet, J. M. J., and Harlan, J. R. 1987 Morphology, Inheritance, and Evolutionary Significance of Sex Reversal in Tripsacum dactyloides (Poaceae). American Journal of Botany 74:10551059.CrossRefGoogle Scholar
Dold, Catherine 1997 The Com Wars. Discover (Dec.) p. 109113.Google Scholar
Eubanks, Mary W 1987 A Cytological Study of the Inheritance of Chromosome Knobs in Maize and Its Close Relatives. Unpublished MS thesis, Department of Biology, Vanderbilt University, Nashville, TN.Google Scholar
Eubanks, Mary W 1989 Corn Plant named Sun Dance. U.S. Patent PP6906. Date issued: 4 July.Google Scholar
Eubanks, Mary W 1992 Corn Plant named Tripsacorn. U.S. Patent PP7977.Date issued: 15 September.Google Scholar
Eubanks, Mary W 1994 Methods and Materials for Conferring Tripsacum Genes in Maize. U. S. patent 5,330,547. Date issued: July 19.Google Scholar
Eubanks, Mary W 1995 A Cross between Two Maize Relatives: Tripsacum dactyloides and Zea diploperennis (Poaceae). Economic Botany 49:172182.CrossRefGoogle Scholar
Eubanks, Mary W 1996a Corn Plant named Sun Star. U.S. Patent PP9640. Date issued: 3 September.Google Scholar
Eubanks, Mary W 1996b Culture of Science/Science of Culture. Anthropology Newsletter 37(4):2.Google Scholar
Eubanks, Mary W 1997 Molecular Analysis of Crosses between Tripsacum dactyloides and Zea diploperennis (Poaceae). Theoretical and Applied Genetics 94:707712.Google Scholar
Eubanks, Mary W 1998 Methods and Materials for Conferring Tripsacum Genes in Maize. U. S. patent 5,750,828. Date issued: 12 May.Google Scholar
Eubanks, Mary W 1999a Novel Genetic Materials for Transmission into Maize. International Patent Application No. PCT/US99/ 17716. Filed 5 Aug.Google Scholar
Eubanks, Mary W 1999b Comparative Analysis of the Genomes of Zea and Tripsacum . Maize Genetics Cooperation Newsletter 73:3032.Google Scholar
Eubanks, Mary W 2001 The Origin of Maize: Evidence for Tripsacum Ancestry. Plant Breeding Reviews 20:1561.Google Scholar
Farquharson, Lois I. 1954 Apomixis, Polyembryony and Related Problems in Tripsacum . Unpublished Ph.D. dissertation, Department of Botany, Indiana University, Bloomington.Google Scholar
Flannery, Kent V. 1986 Guilá Naquitz: Archaic Foraging and Early Agriculture in Oaxaca, Mexico. Academic Press, New York.Google Scholar
Galinat, Walton C. 1960 The Mutagenic Effects of Homozygous and Heterozygous Teosinte Chromosomes in an Isogenic Stock of Maize. Maize Genetics Cooperation Newsletter 34:37.Google Scholar
Galinat, Walton C. 1970 The Cupule and Its Role in the Origin and Evolution of Maize. University of Massachusetts Agricultural Experiment Station Bulletin No. 585, Amherst.Google Scholar
Galinat, Walton C. 1973 Intergenomic Mapping of Maize, Teosinte and Tripsacum . Evolution 27:644655.Google Scholar
Galinat, Walton C. 1985 The Missing Links between Teosinte and Maize: A Review. Maydica 30:137160.Google Scholar
Galinat, Walton C, Chaganti, R.S. K., and Hager, F.D. 1964 Tripsacum as a Possible Amphidiploid of Wild Maize and Manisuris. Botanical Museum Leaflets 20:289316. Harvard University, Cambridge, MA.Google Scholar
Gilmore, Melvin R. 1931 Vegetal Remains of the Ozark Bluff-Dweller Culture. Michigan Academy of Sciences Arts and Letters 14:83102.Google Scholar
Gould, Stephen J. 1984 A Short Way to Corn. Natural History 93:1220.Google Scholar
Iltis, Hugh H., Doebley, John F., Guzmán, R., and Pazy, B. 1979 Zea diploperennis (Gramineae): A New Teosinte from Mexico. Science 203:186188.Google Scholar
Jackson, Wes 1980 New Roots for Agriculture. University of Nebraska Press, Lincoln.Google Scholar
James, J. 1979 New Maize X Tripsacum Hybrids for Maize Improvement. Euphytica 28:239247.CrossRefGoogle Scholar
Jenkins, G., and White, J. 1990 Elimination of Synaptonemal Complex Irregularities in a Lolium Hybrid. Heredity 64:4553.Google Scholar
Jenkins, G., White, J., and Parker, J. S. 1988 Elimination of Multivalents during Meiotic Prophase in Scilla autumnalis. II. Tetraploid. Genome 30:940946.Google Scholar
John, B., and Freeman, M. 1975 Causes and Consequences of Robertsonian Exchange. Chromosoma 52:123136.Google Scholar
Jones, Volney 1936 The Vegetal Remains of Newt Kash Hollow Shelter. University of Kentucky Reports in Anthropology and Archaeology 3:147167.Google Scholar
Kindiger, B. K., and Beckett, J. B. 1990 Cytological Evidence Supporting a Procedure for Directing and Enhancing Pairing between Maize and Tripsacum . Genome 33:495500.Google Scholar
Leblanc, O., Grimanelli, D., Gonzalez de Leon, D., and Savidan, Y. 1995 Detection of the Apomixis Mode of Reproduction in Maizs-Tripsacum Hybrids Using Maize RFLP Markers. Theoretical and Applied Genetics 90:11981203.CrossRefGoogle ScholarPubMed
Lin, L-S., Ho, T-h. D., and Harlan, J. R. 1985 Rapid Amplification and Fixation of New Restriction Sites in the Ribosomal DNA Repeats in the Derivatives of a Cross between Maize and Tripsacum dactyloides . Developmental Genetics 6:101112.Google Scholar
Linde-Laursen, I., and von Bothmer, R. 1988 Elimination and Duplication of Particular Hordeum vulgare Chromosomes in Aneuploid Interspecific Hordeum Hybrids. Theoretical and Applied Genetics 76:897908.Google Scholar
Lord, R. M., and Richards, A. J. 1977 A Hybrid Swarm between the Diploid Dactylorhiza fuchsii (Druce) Soó and the Tetraploid D. purpurella (T. & T. A. Steph.) Soó in Durham. Watsonia 11:205211.Google Scholar
MacNeish, Richard S., and Eubanks, Mary W 2000 Comparative Analysis of the Rio Balsas and Tehuacán Models for the Origin of Maize. Latin American Antiquity 11:320.Google Scholar
Maguire, Majorie M. 1962 Common Loci in Corn and Tripsacum. Journal of Heredity 53:8788.Google Scholar
Mangelsdorf, Paul C. 1958 The Mutagenic Effect of Hybridizing Maize and Teosinte. Cold Spring Harbor Symposium Quantitative Biology 23:409421.Google Scholar
Mangelsdorf, Paul C. 1983 The Mystery of Corn: New Perspectives. Proceedings of the American Philosophical Society 127:215247.Google Scholar
Mangelsdorf, Paul C. 1986 The Origin of Com. Scientific American 255:8086.Google Scholar
Mangelsdorf, Paul C, MacNeish, Richard S., and Galinat, Walton C. 1967a Prehistoric Wild and Cultivated Maize. In The Prehistory of the Tehuacán Valley. Vol. I: Environment and Subsistence, edited by D. S. Byers, pp. 178200. University of Texas Press, Austin.Google Scholar
Mangelsdorf, Paul C, MacNeish, Richard S., and Galinat, Walton C. 1967b Prehistoric Maize, Teosinte, and Tripsacum from Tamaulipas, Mexico. Botanical Museum Leaflets 22:3362. Harvard University, Cambridge, MA.Google Scholar
Mangelsdorf, Paul C, and Reeves, Robert G. 1931 Hybridization of Maize, Tripsacum and Euchlaena . Journal of Heredity 22:329343.Google Scholar
Mangelsdorf, Paul C, and Reeves, Robert G. 1939 The Origin of Indian Com and Its Relatives . Texas Agricultural Experiment Station Bulletin 574:1315. Texas A&M University, College Station.Google Scholar
Mangelsdorf, Paul C, Roberts, Lewis M., and Rogers, John S. 1981 The Probable Origin of Annual Teosintes. Bussey Institution of Harvard University, Cambridge, MA.Google Scholar
McClintock, Barbara 1984 The Significance of Responses of the Genome to Challenge. Science 226:792801.Google Scholar
McDade, Lucinda A. 1992 Hybrids and Phylogenetic Systematics II: The Impact of Hybrids on Cladistic Analysis. Evolution 46:13291346.Google Scholar
Mikklesen, T. R., Andersen, B., and jørgensen, R. B. 1996 The Risk of Crop Transgene Spread. Nature 380:31.Google Scholar
Randolph, L. F. 1950 Crossability of Maize and Tripsacum in Relation to Theories of the Origin of Corn. Proceedings VII International Botanical Congress Stockholm: 179–180.Google Scholar
Rao, B. G. S., and Galinat, Walton C. 1976 The Evolution of the American Maydeae II. The Characteristics of a Tripsacum Chromosome (Tr9) Homoeologous to Maize Chromosome 2. Journal of Heredity 67:235240.Google Scholar
Roeske, Nancy C. A. 1983 Women—s Studies in Medical Education. Journal of Medical Education 58:611618.Google Scholar
Seghal, Surinder M. 1963 Effects of Teosinte and “Tripsacum” Introgression in Maize. Bussey Institution of Harvard University, Cambridge, MA.Google Scholar
Singh, Ram J. 1993 Plant Cytogenetics. CRC Press, Boca Raton, FL.Google Scholar
Smith, Bruce D. 1992 Prehistoric Plant Husbandry in Eastern North America. In The Origins of Agriculture, edited by C. W. Cowan and P. J. Watson, pp. 101119. Smithsonian Institution Press, Washington, DC.Google Scholar
Smith, Bruce D. 1997 The Initial Domestication of Cucurbita pepo in the Americas 10,000 years ago. Science 276:932934.Google Scholar
Smith, C. Earle Jr. 1967 Plant Remains. In The Prehistory of the Tehuacán Valley. Vol. I: Environment and Subsistence, edited by D. S. Byers, pp. 220255. University of Texas Press, Austin.Google Scholar
Wagner, Robert P., Maguire, Marjorie P., and Stallings, Raymond L. 1993 Chromosomes: A Synthesis. Wiley-Liss, New York.Google Scholar
Wilkes, H. Garrison 1979 Mexico and Central America as a center for the origin of maize. Crop Improvement (India) 6:118.Google Scholar