Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-vzs5b Total loading time: 0.338 Render date: 2021-04-15T15:15:32.451Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Prospects of high energy density physics research using the CERN super proton synchrotron (SPS)

Published online by Cambridge University Press:  17 December 2007

N.A. Tahir
Affiliation:
Gesellschaft für Schwerionenforschung Darmstadt, Darmstadt, Germany
R. Schmidt
Affiliation:
CERN-AB, Geneva, Switzerland
M. Brugger
Affiliation:
CERN-AB, Geneva, Switzerland
I.V. Lomonosov
Affiliation:
Institute for Problems of Chemical Physics, Chernogolovka, Russia
A. Shutov
Affiliation:
Institute for Problems of Chemical Physics, Chernogolovka, Russia
A.R. Piriz
Affiliation:
E.T.S.I. Industriales, Universidad de Castilla-La Mancha, Ciudad Real, Spain
S. Udrea
Affiliation:
Institut für Kernphysik, Technische Universität Darmstadt and Gesellschaft für Schwerionenforschung Darmstadt, Darmstadt, Germany
D.H.H. Hoffmann
Affiliation:
Institut für Kernphysik, Technische Universität Darmstadt and Gesellschaft für Schwerionenforschung Darmstadt, Darmstadt, Germany
C. Deutsch
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas, Universite Paris-Sud, Orsay, France
Corresponding
E-mail address:

Abstract

The Super Proton Synchrotron (SPS) will serve as an injector to the Large Hadron Collider (LHC) at CERN as well as it is used to accelerate and extract proton beams for fixed target experiments. In either case, safety of operation is a very important issue that needs to be carefully addressed. This paper presents detailed numerical simulations of the thermodynamic and hydrodynamic response of solid targets made of copper and tungsten that experience impact of a full SPS beam comprized of 288 bunches of 450 GeV/c protons. These simulations have shown that the material will be seriously damaged if such an accident happens. An interesting outcome of this work is that the SPS can be used to carry out dedicated experiments to study High Energy Density (HED) states in matter.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below.

References

Bushman, A.V., Kanel, G.I., Ni, A.L. & Fortov, V.E. (1993). Thermophysics and Dynamics of Intense Pulsed Loadings. London: Taylor and Francis.Google Scholar
Fasso, A., Ferrari, A., Roesler, S., Sala, P.R., Battistoni, G., Cerutti, F., Gadioli, E., Garzelli, M.V., Ballarini, F., Ottolenghi, A., Empl, A. & Ranft, J. (2003). The physics models of FLUKA: Status and recent developments. http://arxiv.org/PS_cache/hep-ph/pdf/0306/0306267v1.pdf.Google Scholar
Fasso, A., Ferrari, A., Ranft, J. & Sala, P.R. (2005). FLUKA: A multiparticle transport code. http://aliceinfo.cern.ch/alicvs/viewvc/doc/fluka.slac-r-773.pdf?revision=1.2.Google Scholar
Fortov, V.E., Goel, B., Munz, C.-D., Ni, A.L., Shutov, A. & Vorbiev, O.Yu. (1996). Numerical simulations of non-stationary fronts and interfaces by the Godunov method in m oving grids. Nucl. Sci. Eng. 123, 169.CrossRefGoogle Scholar
Fortov, V.E. & Yakubov, I.T. (1999). Physics of Non-Ideal Plasmas. London: World Science Publishers.CrossRefGoogle Scholar
Goddard, B., Kain, V., Uythoven, J. & Wenninger, J. (2004). TT40 damage during 2004 high intensity SPS extraction. CERN-AB-Note-2005-014, Geneva.Google Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives of high energy density physics with intense ions and laser beams. Laser Part. Beams 23, 47.CrossRefGoogle Scholar
Kain, V., Vorderwinkler, K.Ramillon, J., Schmidt, R. & Wenninger, J. (2005). Material damage test with 450 GeV LHC-type beam. http://accelconf.web.cern.ch/accelconf/p05/papers/rppe018.pdf.Google Scholar
Lomonosov, I.V. (2007). Multi-phase equation of state for aluminum. Laser Part. Beams 25, 567584.CrossRefGoogle Scholar
Lopez Cela, J.J., Piriz, A.R., Serena Moreno, M. & Tahir, N.A. (2006). Numerical simulations of Rayleigh–Taylor instability in elastic solids. Laser Part. Beams 24, 427.Google Scholar
Piriz, A.R., Portugues, R.F., Tahir, N.A. & Hofmann, D.H.H. (2002). Implosion of multilayered cylindrical targets driven by intense heavy ion beams. Phys. Rev. E. 66, 056403.CrossRefGoogle ScholarPubMed
Piriz, A.R., Temporal, M., Lopez Cela, J.J., Tahir, N.A. & Hoffmann, D.H.H. (2003 a). Symmetry analysis of cylindrical implosions driven by high-frequency rotating ion beams. Plasma Phys. Contr. Fusion 45, 1733.CrossRefGoogle Scholar
Piriz, A.R., Tahir, N.A., Hoffmann, D.H.H. & Temporal, M. (2003 b). Generation of hollow ion beam: calculation of rotation frequency required to accommodate symmetry constraints. Phys. Rev. E. 67, 017501.CrossRefGoogle Scholar
Piriz, A.R., Lopez Cela, J.J., Cortazar, O.D., Tahir, N.A. & Hoffmann, D.H.H. (2005). Rayleigh-Taylor instability in elastic solids. Phys. Rev. E. 72, 056313.CrossRefGoogle ScholarPubMed
Piriz, A.R., Lopez Cela, J.J., Serena Moreno, M., Tahir, N.A. & Hoffmann, D.H.H. (2006). Thin plate effects in the Rayleigh-Taylor instability of elastic solids. Laser Part. Beams 24, 275.CrossRefGoogle Scholar
Piriz, A.R., Tahir, N.A., Lopez Cela, J.J., Cortazar, O.D., Serna Moreno, M.C., Temporal, M. & Hoffmann, D.H.H. (2007 a). Analytic models for the design of the LAPLAS target. Contrib. Plasma Phys. 47, 213.CrossRefGoogle Scholar
Piriz, A.R., Lopez Cela, J.J., Serna Moreno, M.C., Cortazar, O.D., Tahir, N.A. & Hoffmann, D.H.H. (2007 b). A new approach to Rayleigh–Taylor instability: Applications to accelerated elastic solids. Nucl. Instrum. Meth. Phys. Res. A. 577, 250.CrossRefGoogle Scholar
Ray, A., Srivastava, M.K., Kodayya, G. & Menon, S.V.G. (2006). Improved equation of state of metals in the liquid-vapor region. Laser Part. Beams 24, 437.CrossRefGoogle Scholar
Tahir, N.A., Hoffmann, D.H.H., Maruhn, J.A., Spiller, P. & Bock, R. (1999). Heavy ion induced hydrodynamic effects in solid targets. Phys. Rev. E. 60, 4715.CrossRefGoogle ScholarPubMed
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Shutov, A., Maruhn, J.A., Neuner, U., Tauschwitz, A., Spiller, P. & Bock, R. (2000 a). Shock compression of condensed matter using intense beams of energetic heavy ions. Phys. Rev. E. 61, 1975.CrossRefGoogle ScholarPubMed
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Shutov, A., Maruhn, J.A., Neuner, U., Tauschwitz, A., Spiller, P. & Bock, R. (2000 b). Equation-of-state properties of high-energy-density matter using intense heavy ion beams with an annular focal spot. Phys. Rev. E. 62, 1224.CrossRefGoogle ScholarPubMed
Tahir, N.A., Kozyreva, SPiller, P., Hoffmann, D.H.H. & Shutov, A. (2001 a). Necessity of bunch compression for heavy-ion-induced hydrodynamics and studies of beam fragmentation in solid targets at a proposed synchrotron facility. Phys. Rev. E. 63, 036407.CrossRefGoogle Scholar
Tahir, N.A., Hoffmann, D.H.H., Kozyreva, A., Tauschwitz, A., Shutov, A., Maruhn, J.A., Spiller, P., Nuener, U., Jacoby, J., Roth, M., Bock, R., Juranek, H. & Redmer, R. (2001 b). Metallization of hydrogen using heavy-ion-beam implosion of multi-layered targets. Phys. Rev. E. 63, 016402.CrossRefGoogle Scholar
Tahir, N.A., Juranek, H., Shutov, A., Redmer, R., Piriz, A.R., Temporal, M., Varentsov, D., Udrea, S., Hoffmann, D.H.H., Deutsch, C., Lomonosov, I. & Fortov, V.E. (2003 a). Influence of the equation of state on the compression and heating of hydrogen. Phys. Rev. B. 67, 184101.CrossRefGoogle Scholar
Tahir, N.A., Shutov, A., Varentsov, D., Spiller, P., Udrea, S., Hoffmann, D.H.H., Lomonosov, I.V., Wieser, J., Kirk, M., Piriz, R., Fortov, V.E. & Bock, R. (2003 b). Influence of the equation of state of matter and ion beam charesteristics on target heating and compression. Phys. Rev. Spec. Topics Accel. Beams 6, 020101.CrossRefGoogle Scholar
Tahir, N.A., Goddard, B., Kain, V., Schmidt, R., Shutov, A., Lomonosov, I.V., Piriz, A.R., Temporal, M., Hoffmann, D.H.H. & Fortov, V.E. (2005 a). Impact of 7-Tev/c large hadron collider proton beam on a copper target. J. Appl. Phys. 97, 083532.CrossRefGoogle Scholar
Tahir, N.A., Kain, V., Schmidt, R., Shutov, A., Lomonosov, I.V., Gryaznov, V., Piriz, A.R., Temporal, M., Hoffmann, D.H.H. & Fortov, V.E. (2005 b). The CERN large hadron collider as a tool to study high-energy-density physics. Phys. Rev. Lett. 94, 135004.CrossRefGoogle Scholar
Tahir, N.A., Adonin, A., Deutsch, C., Fortov, V.E., Grandjouan, N., Geil, B., Gryaznov, V., Hoffmann, D.H.H., Kulish, M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D., Piriz, A.R., Shilkin, N., Spiller, P., Shutov, A., Temporal, M., Ternovoi, V., Udrea, S. & Varentsov, D. (2005 c). Studies of heavy ion-induced highenergy density states in matter at the GSI Darmstadt SIS-18 and future FAIR facility. Nucl. Instrum. Meth. Phys. Res. A. 544, 16.CrossRefGoogle Scholar
Tahir, N.A., Deutsch, C., Fortov, V.E., Gryaznov, V., Hoffmann, D.H.H., Kulish, M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D., Piriz, A.R., Shilkin, N., Spiller, P., Shutov, A., Temporal, M., Ternovoi, V., Udrea, S. & Varentsov, D. (2005 d). Proposal for the study of thermophysical properties of high-energy-density matter using current and future heavy ion accelerator facilities at GSI Darmstadt. Phys. Rev. Lett. 95, 035001.CrossRefGoogle Scholar
Tahir, N.A., Spiller, P., Udrea, S., Cortazar, O.D., Deutsch, C., Fortov, V.E., Gryaznov, V., Hoffmann, D.H.H., Lomonosov, I.V., Ni, P., Piriz, A.R., Shutov, A., Temporal, M. & Varentsov, D. (2006). Studies of equation-of-state properties of high-energy density matter using intense heavy ion beams at the future FAIR facility: The HEDgeHOB Collaboration. Nucl. Instrum. Meth. Phys. Res. B. 245, 85.CrossRefGoogle Scholar
Tahir, N.A., Spiller, P., Shutov, A., Lomonosov, I.V., Gryaznov, V., Piriz, A.R., Wouchuk, G., Deutsch, C., Fortov, V.E., Hoffmann, D.H.H. & Schmidt, R. (2007 a). HEDgeHOB: High-energydensity matter generated by heavy ion beams at the future facility for antiprotons and ion research. Nucl. Instrum. Meth. Phys. Res. A. 577, 238.CrossRefGoogle Scholar
Tahir, N.A., Piriz, A.R., Shutov, A., Lomonosov, I.V., Gryaznov, V., Wouchuk, G., Deutsch, C., Spiller, P., Fortov, V.E., Hoffmann, D.H.H. & Schmidt, R. (2007 b). Survey of theoretical work for the proposed HEDgeHOB collaboration: HIHEX and LAPLAS. Contrib. Plasma Phys. 47, 223.CrossRefGoogle Scholar
Tahir, N.A., Kim, V., Grigoriev, D.A., Piriz, A.R., Weick, H., Geissel, H. & Hoffmann, D.H.H. (2007 c). High energy density physics problems related to liquid jet lithium target for Super-FRS fast extraction scheme. Laser Part. Beams 25, 295.CrossRefGoogle Scholar
Temporal, M., Piriz, A.R., Grandjouan, N., Tahir, N.A. & Hoffmann, D.H.H. (2003). Numerical analysis of a multilayered cylindrical target compression driven by a rotating intense heavy ion beam. Laser Part. Beams 21, 609.CrossRefGoogle Scholar
Temporal, M., Lopez-Cela, J.J., Piriz, A.R., Grandjouan, N., Tahir, N.A. & Hoffmann, D.H.H. (2005). Compression of a cylindricalhydrogen sample driven by an intense co-axial heavy ion beam. Laser Part. Beams 23, 137.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 3
Total number of PDF views: 12 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 15th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Prospects of high energy density physics research using the CERN super proton synchrotron (SPS)
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Prospects of high energy density physics research using the CERN super proton synchrotron (SPS)
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Prospects of high energy density physics research using the CERN super proton synchrotron (SPS)
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *