Skip to main content Accessibility help

Striatal and Pallidal Activation during Reward Modulated Movement Using a Translational Paradigm

  • Amanda Bischoff-Grethe (a1), Richard B. Buxton (a2), Martin P. Paulus (a3), Adam S. Fleisher (a4), Tony T. Yang (a5) and Gregory G. Brown (a1)...


Human neuroimaging studies of reward processing typically involve tasks that engage decision-making processes in the dorsal striatum or focus upon the ventral striatum’s response to feedback expectancy. These studies are often compared to the animal literature; however, some animal studies include both feedback and nonfeedback events that activate the dorsal striatum during feedback expectancy. Differences in task parameters, movement complexity, and motoric effort to attain rewards may partly explain ventral and dorsal striatal response differences across species. We, therefore, used a target capture task during functional neuroimaging that was inspired by a study of single cell modulation in the internal globus pallidus during reward-cued, rotational arm movements in nonhuman primates. In this functional magnetic resonance imaging study, participants used a fiberoptic joystick to make a rotational response to an instruction stimulus that indicated both a target location for a capture movement and whether or not the trial would end with feedback indicating either a small financial gain or a neutral outcome. Portions of the dorsal striatum and pallidum demonstrated greater neural activation to visual cues predicting potential gains relative to cues with no associated outcome. Furthermore, both striatal and pallidal regions displayed a greater response to financial gains relative to neutral outcomes. This reward-dependent modulation of dorsal striatal and pallidal activation in a target-capture task is consistent with findings from reward studies in animals, supporting the use of motorically complex tasks as translational paradigms to investigate the neural substrates of reward expectancy and outcome in humans. (JINS, 2015, 21, 399–411)


Corresponding author

Correspondence and reprint requests to: Amanda Bischoff-Grethe, University of California, San Diego, 9500 Gilman Drive MC 0738, La Jolla, CA 92093-0738. E-mail:


Hide All
Ances, B.M., Leontiev, O., Perthen, J.E., Liang, C., Lansing, A.E., & Buxton, R.B. (2008). Regional differences in the coupling of cerebral blood flow and oxygen metabolism changes in response to activation: Implications for BOLD-fMRI. Neuroimage, 39, 15101521. doi: 10.1016/j.neuroimage.2007.11.015
Apicella, P., Ljungberg, T., Scarnati, E., & Schultz, W. (1991). Responses to reward in monkey dorsal and ventral striatum. Experimental Brain Research, 85, 491500. doi: 10.1007/BF00231732
Arkadir, D., Morris, G., Vaadia, E., & Bergman, H. (2004). Independent coding of movement direction and reward prediction by single pallidal neurons. The Journal of Neuroscience, 24, 1004710056. doi: 10.1523/JNEUROSCI.2583-04.2004
Ashburner, J., & Friston, K.J. (1999). Nonlinear spatial normalization using basis functions. Human Brain Mapping, 7, 254266. doi: 10.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>3.0.CO;2-G
Balleine, B.W., Delgado, M.R., & Hikosaka, O. (2007). The role of the dorsal striatum in reward and decision-making. The Journal of Neuroscience, 27, 81618165. doi: 10.1523/JNEUROSCI.1554-07.2007
Balleine, B.W., & O’Doherty, J.P. (2010). Human and rodent homologies in action control: Corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology, 35, 4869. doi: npp2009131 [pii] 10.1038/npp.2009.131
Bartra, O., McGuire, J.T., & Kable, J.W. (2013). The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. Neuroimage, 76, 412427. doi: 10.1016/j.neuroimage.2013.02.063
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate - A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B-Methodological, 57, 289300. Retrieved from
Benton, A.L., & Tranel, D. (1993). Visuoperceptive, visuospatial, and visuoconstructive disorders. In K.E. Heilman & E. Valenstein (Eds.), Clinical neuropsychology (3rd ed., pp. 165213). New York: Grune and Stratton.
Brand, M., Laier, C., Pawlikowski, M., & Markowitsch, H.J. (2009). Decision making with and without feedback: The role of intelligence, strategies, executive functions, and cognitive styles. Journal of Clinical and Experimental Neuropsychology, 31, 984998. doi: 10.1080/13803390902776860
Breiter, H.C., Aharon, I., Kahneman, D., Dale, A., & Shizgal, P. (2001). Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron, 30, 619639. doi: 10.1016/S0896-6273(01)00303-8
Brett, M., Anton, J.-L., Valabregue, R., & Poline, J.-B. (2002, June 2-6, 2002). Region of interest analysis using an SPM toolbox. Paper presented at the 8th International Conference on Functional Mapping of the Human Brain, Sendai, Japan.
Brown, G.G., Caligiuri, M., Meloy, M.J., Eberson, S.C., Kindermann, S.S., Frank, L.R., & Lohr, J.B. (2004). Functional brain asymmetries during visuomotor tracking. Journal of Clinical and Experimental Neuropsychology, 26, 356368. doi: 10.1080/13803390490510086
Bunzeck, N., Dayan, P., Dolan, R.J., & Duzel, E. (2010). A common mechanism for adaptive scaling of reward and novelty. Human Brain Mapping, 31, 13801394. doi: 10.1002/hbm.20939
Buracas, G.T., & Boynton, G.M. (2002). Efficient design of event-related fMRI experiments using M-sequences. Neuroimage, 16, 801813. doi: 10.1006/nimg.2002.1116
Buxton, R.B. (2009). Introduction to functional magnetic resonance imaging: Principles and techniques. New York: Cambridge University Press.
Chau, D.T., Roth, R.M., & Green, A.I. (2004). The neural circuitry of reward and its relevance to psychiatric disorders. Current Psychiatry Reports, 6, 391399. doi: 10.1007/s11920-004-0026-8
Choi, J.K., Chen, Y.I., Hamel, E., & Jenkins, B.G. (2006). Brain hemodynamic changes mediated by dopamine receptors: Role of the cerebral microvasculature in dopamine-mediated neurovascular coupling. Neuroimage, 30, 700712. doi: 10.1016/j.neuroimage.2005.10.029
Daniel, R., & Pollmann, S. (2014). A universal role of the ventral striatum in reward-based learning: Evidence from human studies. Neurobiology of Learning and Memory, 114, 90100. doi: 10.1016/j.nlm.2014.05.002
Davis, C., Fox, J., Patte, K., Curtis, C., Strimas, R., Reid, C., & McCool, C. (2008). Education level moderates learning on two versions of the Iowa Gambling Task. Journal of the International Neuropsychological Society, 14, 10631068. doi: 10.1017/S1355617708081204
Davis, T.L., Kwong, K.K., Weisskoff, R.M., & Rosen, B.R. (1998). Calibrated functional MRI: Mapping the dynamics of oxidative metabolism. Proceedings of the National Academy of Sciences of the United States of America, 95, 18341839. doi: 10.1073/pnas.95.4.1834
Deichmann, R., Gottfried, J.A., Hutton, C., & Turner, R. (2003). Optimized EPI for fMRI studies of the orbitofrontal cortex. Neuroimage, 19, 430441. doi: 10.1016/s1053-8119(03)00073-9
Delgado, M.R., & Dickerson, K.C. (2012). Reward-related learning via multiple memory systems. Biological Psychiatry, 72, 134141. doi: 10.1016/j.biopsych.2012.01.023
Delgado, M.R., Locke, H.M., Stenger, V.A., & Fiez, J.A. (2003). Dorsal striatum responses to reward and punishment: Effects of valence and magnitude manipulations. Cognitive, Affective, & Behavioral Neuroscience, 3, 2738. doi: 10.3758/CABN.3.1.27
Delgado, M.R., Miller, M.M., Inati, S., & Phelps, E.A. (2005). An fMRI study of reward-related probability learning. Neuroimage, 24, 862873. doi: 10.1016/j.neuroimage.2004.10.002
Delgado, M.R., Nystrom, L.E., Fissell, C., Noll, D.C., & Fiez, J.A. (2000). Tracking the hemodynamic responses to reward and punishment in the striatum. Journal of Neurophysiology, 84, 30723077. Retrieved from
DeLong, M.R. (1973). Putamen: Activity of single units during slow and rapid arm movements. Science, 179, 12401242. doi: 10.1126/science.179.4079.1240
DeLong, M.R., Georgopoulos, A.P., Crutcher, M.D., Mitchell, S.J., Richardson, R.T., & Alexander, G.E. (1984). Functional organization of the basal ganglia: Contributions of single-cell recording studies. Ciba Foundation Symposium, 107, 6482. doi: 10.1002/9780470720882.ch5
Elliott, R., Friston, K.J., & Dolan, R.J. (2000). Dissociable neural responses in human reward systems. The Journal of Neuroscience, 20, 61596165. Retrieved from
Ernst, M., Nelson, E.E., McClure, E.B., Monk, C.S., Munson, S., Eshel, N., & Pine, D.S. (2004). Choice selection and reward anticipation: An fMRI study. Neuropsychologia, 42, 15851597. doi: 10.1016/j.neuropsychologia.2004.05.011
Evans, C.E., Kemish, K., & Turnbull, O.H. (2004). Paradoxical effects of education on the Iowa Gambling Task. Brain and Cognition, 54, 240244. doi: 10.1016/j.bandc.2004.02.022
Evarts, E.V., & Wise, S.P. (1984). Basal ganglia outputs and motor control. Ciba Foundation Symposium, 107, 83102. doi: 10.1002/9780470720882.ch6
Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.-B., Frith, C.D., & Frackowiak, R.S.J. (1995). Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping, 2, 189210. doi: 10.1002/hbm.460020402
Galvan, A., Hare, T.A., Davidson, M., Spicer, J., Glover, G., & Casey, B.J. (2005). The role of ventral frontostriatal circuitry in reward-based learning in humans. The Journal of Neuroscience, 25, 86508656. doi: 10.1523/JNEUROSCI.2431-05.2005
Gdowski, M.J., Miller, L.E., Bastianen, C.A., Nenonene, E.K., & Houk, J.C. (2007). Signaling patterns of globus pallidus internal segment neurons during forearm rotation. Brain Research, 1155, 5669. doi: 10.1016/j.brainres.2007.04.028
Gdowski, M.J., Miller, L.E., Parrish, T., Nenonene, E.K., & Houk, J.C. (2001). Context dependency in the globus pallidus internal segment during targeted arm movements. Journal of Neurophysiology, 85, 9981004. Retrieved from
Haber, S.N., & Knutson, B. (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35, 426. doi: 10.1038/npp.2009.129
Harsay, H.A., Cohen, M.X., Oosterhof, N.N., Forstmann, B.U., Mars, R.B., & Ridderinkhof, K.R. (2011). Functional Connectivity of the Striatum Links Motivation to Action Control in Humans. The Journal of Neuroscience, 31, 1070110711. doi: 10.1523/JNEUROSCI.5415-10.2011
Hollerman, J.R., Tremblay, L., & Schultz, W. (1998). Influence of reward expectation on behavior-related neuronal activity in primate striatum. Journal of Neurophysiology, 80, 947963. Retrieved from
Jensen, J., Smith, A.J., Willeit, M., Crawley, A.P., Mikulis, D.J., Vitcu, I., & Kapur, S. (2007). Separate brain regions code for salience vs. valence during reward prediction in humans. Human Brain Mapping, 28, 294302. doi: 10.1002/hbm.20274
Kawagoe, R., Takikawa, Y., & Hikosaka, O. (1998). Expectation of reward modulates cognitive signals in the basal ganglia. Nature Neuroscience, 1, 411416. Retrieved from
Kim, H., Shimojo, S., & O’Doherty, J.P. (2011). Overlapping responses for the expectation of juice and money rewards in human ventromedial prefrontal cortex. Cerebral Cortex, 21, 769776. doi: 10.1093/cercor/bhq145
Knutson, B., Fong, G.W., Adams, C.M., Varner, J.L., & Hommer, D. (2001). Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport, 12, 36833687. doi: 10.1097/00001756-200112040-00016
Knutson, B., & Greer, S.M. (2008). Anticipatory affect: Neural correlates and consequences for choice. Philosophical Transactions of the Royal Society B-Biological Sciences, 363, 37713786. doi: 10.1098/rstb.2008.0155
Knutson, B., Westdorp, A., Kaiser, E., & Hommer, D. (2000). FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage, 12, 2027. doi: 10.1006/nimg.2000.0593
Kornhuber, H.H. (1971). Motor functions of cerebellum and basal ganglia: The cerebellocortical saccadic (ballistic) clock, the cerebellonuclear hold regulator, and the basal ganglia ramp (voluntary speed smooth movement) generator. Kybernetik, 8, 157162. doi: 10.1007/BF00290561
Kwong, K.K., Belliveau, J.W., Chesler, D.A., Goldberg, I.E., Weisskoff, R.M., Poncelet, B.P., & Turner, R. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences of the United States of America, 89, 56755679. doi: 10.1073/pnas.89.12.5675
Lau, B., & Glimcher, P.W. (2007). Action and outcome encoding in the primate caudate nucleus. Journal of Neuroscience, 27, 1450214514. doi: 10.1523/JNEUROSCI.3060-07.2007
Lauwereyns, J., Watanabe, K., Coe, B., & Hikosaka, O. (2002). A neural correlate of response bias in monkey caudate nucleus. Nature, 418, 413417.
Liu, X., Hairston, J., Schrier, M., & Fan, J. (2011). Common and distinct networks underlying reward valence and processing stages: A meta-analysis of functional neuroimaging studies. Neuroscience and Biobehavioral Reviews, 35, 12191236. doi: 10.1016/j.neubiorev.2010.12.012
Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412, 150157. Retrieved from
Mattfeld, A.T., Gluck, M.A., & Stark, C.E. (2011). Functional specialization within the striatum along both the dorsal/ventral and anterior/posterior axes during associative learning via reward and punishment. Learning & Memory, 18, 703711. doi: 10.1101/lm.022889.111
McClure, S.M., Ericson, K.M., Laibson, D.I., Loewenstein, G., & Cohen, J.D. (2007). Time discounting for primary rewards. The Journal of Neuroscience, 27, 57965804. doi: 10.1523/JNEUROSCI.4246-06.2007
McClure, S.M., Laibson, D.I., Loewenstein, G., & Cohen, J.D. (2004). Separate neural systems value immediate and delayed monetary rewards. Science, 306, 503507. doi: 10.1126/science.1100907
Mishra, A.M., Ellens, D.J., Schridde, U., Motelow, J.E., Purcaro, M.J., DeSalvo, M.N.,& Blumenfeld, H. (2011). Where fMRI and electrophysiology agree to disagree: Corticothalamic and striatal activity patterns in the WAG/Rij rat. The Journal of Neuroscience, 31, 1505315064. doi: 10.1523/JNEUROSCI.0101-11.2011
Neary, M.T., & Batterham, R.L. (2010). Gaining new insights into food reward with functional neuroimaging. Forum of Nutrition, 63, 152163. doi: 10.1159/000264403
Nieuwenhuis, S., Heslenfeld, D.J., Alting von Geusau, N.J., Mars, R.B., Holroyd, C.B., & Yeung, N. (2005). Activity in human reward-sensitive brain areas is strongly context dependent. Neuroimage, 25, 13021309. doi: 10.1016/J.Neuroimage.2004.12.043
O’Doherty, J.P., Deichmann, R., Critchley, H.D., & Dolan, R.J. (2002). Neural responses during anticipation of a primary taste reward. Neuron, 33, 815826.
Ogawa, S., Tank, D.W., Menon, R., Ellermann, J.M., Kim, S.G., Merkle, H., &Ugurbil, K. (1992). Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America, 89, 59515955. doi: 10.1073/pnas.89.13.5951
Rademacher, L., Krach, S., Kohls, G., Irmak, A., Gründer, G., & Spreckelmeyer, K.N. (2010). Dissociation of neural networks for anticipation and consumption of monetary and social rewards. Neuroimage, 49, 32763285. doi: 10.1016/j.neuroimage.2009.10.089
Samanez-Larkin, G.R., Worthy, D.A., Mata, R., McClure, S.M., & Knutson, B. (2014). Adult age differences in frontostriatal representation of prediction error but not reward outcome. Cognitive, Affective & Behavioral Neuroscience, 14, 672682. doi: 10.3758/s13415-014-0297-4
Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36, 241263.
Schultz, W. (2007). Behavioral dopamine signals. Trends in Neurosciences, 30, 203210. doi: 10.1016/j.tins.2007.03.007
Seymour, B., Daw, N., Dayan, P., Singer, T., & Dolan, R. (2007). Differential encoding of losses and gains in the human striatum. Journal of Neuroscience, 27, 48264831.
Shepherd, G.M. (1994). Neurobiology (3rd ed.) New York: Oxford University Press.
Shih, Y.Y., Chen, C.C., Shyu, B.C., Lin, Z.J., Chiang, Y.C., Jaw, F.S., & Chang, C. (2009). A new scenario for negative functional magnetic resonance imaging signals: Endogenous neurotransmission. The Journal of Neuroscience, 29, 30363044. doi: 10.1523/JNEUROSCI.3447-08.2009
Tanaka, S.C., Doya, K., Okada, G., Ueda, K., Okamoto, Y., & Yamawaki, S. (2004). Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nature Neuroscience, 7, 887893. doi: 10.1038/nn1279
Teasdale, N., Bard, C., Fleury, M., Young, D.E., & Proteau, L. (1993). Determining movement onsets from temporal series. Journal of Motor Behavior, 25, 97106. doi: 10.1080/00222895.1993.9941644
Thut, G., Schultz, W., Roelcke, U., Nienhusmeier, M., Missimer, J., Maguire, R.P., & Leenders, K.L. (1997). Activation of the human brain by monetary reward. Neuroreport, 8, 12251228. doi: 10.1097/00001756-199703240-00033
Tremblay, L., Hollerman, J.R., & Schultz, W. (1998). Modifications of reward expectation-related neuronal activity during learning in primate striatum. Journal of Neurophysiology, 80, 964977. Retrieved from
Tricomi, E.M., Delgado, M.R., & Fiez, J.A. (2004). Modulation of caudate activity by action contingency. Neuron, 41, 281292.
Turner, R.S., & Anderson, M.E. (2005). Context-dependent modulation of movement-related discharge in the primate globus pallidus. The Journal of Neuroscience, 25, 29652976. doi: 10.1523/JNEUROSCI.4036-04.2005
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N.,& Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15, 273289. doi: 10.1006/nimg.2001.0978
Volkow, N.D., Fowler, J.S., Gatley, S.J., Logan, J., Wang, G.J., Ding, Y.S., & Dewey, S. (1996). PET evaluation of the dopamine system of the human brain. Journal of Nuclear Medicine, 37, 12421256. Retrieved from
Wallis, J.D., & Kennerley, S.W. (2011). Contrasting reward signals in the orbitofrontal cortex and anterior cingulate cortex. Annals of the New York Academy of Sciences, 1239, 3342. doi: 10.1111/j.1749-6632.2011.06277.x
Wu, C.C., Sacchet, M.D., & Knutson, B. (2012). Toward an affective neuroscience account of financial risk taking. Frontiers in Neuroscience, 6, 159 doi: 10.3389/fnins.2012.00159
Yin, H.H., & Knowlton, B.J. (2006). The role of the basal ganglia in habit formation. Nature Reviews Neuroscience, 7, 464476.


Type Description Title
Supplementary materials

Bischoff-Grethe supplemantary material S1
Supplementary Material Revision

 Word (145 KB)
145 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed