Skip to main content Accessibility help

Salience and Default Mode Network Coupling Predicts Cognition in Aging and Parkinson’s Disease

  • Deepti Putcha (a1) (a2), Robert S. Ross (a1) (a2) (a3), Alice Cronin-Golomb (a1), Amy C. Janes (a4) and Chantal E. Stern (a1) (a2)...


Objectives: Cognitive impairment is common in Parkinson’s disease (PD). Three neurocognitive networks support efficient cognition: the salience network, the default mode network, and the central executive network. The salience network is thought to switch between activating and deactivating the default mode and central executive networks. Anti-correlated interactions between the salience and default mode networks in particular are necessary for efficient cognition. Our previous work demonstrated altered functional coupling between the neurocognitive networks in non-demented individuals with PD compared to age-matched control participants. Here, we aim to identify associations between cognition and functional coupling between these neurocognitive networks in the same group of participants. Methods: We investigated the extent to which intrinsic functional coupling among these neurocognitive networks is related to cognitive performance across three neuropsychological domains: executive functioning, psychomotor speed, and verbal memory. Twenty-four non-demented individuals with mild to moderate PD and 20 control participants were scanned at rest and evaluated on three neuropsychological domains. Results: PD participants were impaired on tests from all three domains compared to control participants. Our imaging results demonstrated that successful cognition across healthy aging and Parkinson’s disease participants was related to anti-correlated coupling between the salience and default mode networks. Individuals with poorer performance scores across groups demonstrated more positive salience network/default-mode network coupling. Conclusions: Successful cognition relies on healthy coupling between the salience and default mode networks, which may become dysfunctional in PD. These results can help inform non-pharmacological interventions (repetitive transcranial magnetic stimulation) targeting these specific networks before they become vulnerable in early stages of Parkinson’s disease. (JINS, 2016, 22, 205–215)


Corresponding author

Correspondence and reprint requests to: Deepti Putcha, 2 Cummington Mall, Center for Memory and Brain, Boston University, Boston, MA 02215. E-mail:


Hide All
Aarsland, D., Andersen, K., Larsen, J.P., Lolk, A., & Kragh-Sorensen, P. (2003). Prevalence and characteristics of dementia in Parkinson disease: An 8-year prospective study. Archives of Neurology, 60(3), 387392.
Barone, P., Aarsland, D., Burn, D., Emre, M., Kulisevsky, J., & Weintraub, D. (2011). Cognitive impairment in nondemented Parkinson’s disease. Movement Disorders, 26(14), 24832495. doi:10.1002/mds.23919
Beckmann, C.F., Mackay, C.E., Filippini, N., & Smith, S.M. (2009). Group comparison of resting-state FMRI data using multi-subject ICA and dual regression. Paper presented at the OHBM.
Bonnelle, V., Ham, T.E., Leech, R., Kinnunen, K.M., Mehta, M.A., Greenwood, R.J., && Sharp, D.J. (2012). Salience network integrity predicts default mode network function after traumatic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 109(12), 46904695. doi:10.1073/pnas.1113455109
Bosboom, J.L., Stoffers, D., & Wolters, E. (2004). Cognitive dysfunction and dementia in Parkinson’s disease. Journal of Neural Transmission, 111(10-11), 13031315. doi:10.1007/s00702-004-0168-1
Bressler, S.L., & Menon, V. (2010). Large-scale brain networks in cognition: Emerging methods and principles. Trends in Cognitive Sciences, 14(6), 277290. doi:10.1016/j.tics.2010.04.004
Bronnick, K., Alves, G., Aarsland, D., Tysnes, O.B., & Larsen, J.P. (2011). Verbal memory in drug-naive, newly diagnosed Parkinson’s disease. The retrieval deficit hypothesis revisited. Neuropsychology, 25(1), 114124. doi:10.1037/a0020857
Buckner, R.L., Andrews-Hanna, J.R., & Schacter, D.L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 138.
Buddenberg, L.A., & Davis, C. (2000). Test-retest reliability of the Purdue Pegboard Test. The American Journal of Occupational Therapy, 54(5), 555558.
Chikama, M., McFarland, N.R., Amaral, D.G., & Haber, S.N. (1997). Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. The Journal of Neuroscience, 17(24), 96869705.
Chiong, W., Wilson, S.M., D’Esposito, M., Kayser, A.S., Grossman, S.N., Poorzand, P., & Rankin, K.P. (2013). The salience network causally influences default mode network activity during moral reasoning. Brain, 136(Pt 6), 19291941. doi:10.1093/brain/awt066
Christopher, L., Duff-Canning, S., Koshimori, Y., Segura, B., Boileau, I., Chen, R., & Strafella, A.P. (2015). Salience network and parahippocampal dopamine dysfunction in memory-impaired Parkinson disease. Annals of Neurology, 77(2), 269280. doi:10.1002/ana.24323
Christopher, L., Koshimori, Y., Lang, A.E., Criaud, M., & Strafella, A.P. (2014). Uncovering the role of the insula in non-motor symptoms of Parkinson’s disease. Brain, 137, 21432154. doi:awu084 [pii]
Christopher, L., Marras, C., Duff-Canning, S., Koshimori, Y., Chen, R., Boileau, I., & Strafella, A.P. (2014). Combined insular and striatal dopamine dysfunction are associated with executive deficits in Parkinson’s disease with mild cognitive impairment. Brain, 137(Pt 2), 565575. doi:awt337 [pii]
Cole, D.M., Beckmann, C.F., Long, C.J., Matthews, P.M., Durcan, M.J., & Beaver, J.D. (2010). Nicotine replacement in abstinent smokers improves cognitive withdrawal symptoms with modulation of resting brain network dynamics. Neuroimage, 52(2), 590599. doi:10.1016/j.neuroimage.2010.04.251
Dikmen, S.S., Heaton, R.K., Grant, I., & Temkin, N.R. (1999). Test-retest reliability and practice effects of expanded Halstead-Reitan Neuropsychological Test Battery. Journal of the International Neuropsychological Society, 5(4), 346356.
Dirnberger, G., & Jahanshahi, M. (2013). Executive dysfunction in Parkinson’s disease: A review. Journal of Neuropsychology, 7(2), 193224. doi:10.1111/jnp.12028
Disbrow, E.A., Carmichael, O., He, J., Lanni, K.E., Dressler, E.M., Zhang, L., & Sigvardt, K.A. (2014). Resting state functional connectivity is associated with cognitive dysfunction in non-demented people with Parkinson’s disease. Journal of Parkinsons Disease, 4, 453465. doi:1J0371M16R3R8714 [pii]
Dosenbach, N.U., Visscher, K.M., Palmer, E.D., Miezin, F.M., Wenger, K.K., Kang, H.C., & Petersen, S.E. (2006). A core system for the implementation of task sets. Neuron, 50(5), 799812. doi:S0896-6273(06)00349-7 [pii]
Doyen, A.L., & Carlier, M. (2002). Measuring handedness: A validation study of Bishop’s reaching card test. Laterality, 7(2), 115130. doi:10.1080/13576500143000140
Duan, X., Liao, W., Liang, D., Qiu, L., Gao, Q., Liu, C., & Chen, H. (2012). Large-scale brain networks in board game experts: Insights from a domain-related task and task-free resting state. PLoS One, 7(3), e32532. doi:10.1371/journal.pone.0032532
Filippini, N., MacIntosh, B.J., Hough, M.G., Goodwin, G.M., Frisoni, G.B., Smith, S.M., & Mackay, C.E. (2009). Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proceedings of the National Academy of Sciences of the United States of America, 106(17), 72097214. doi:0811879106 [pii].
Foltynie, T., Brayne, C.E., Robbins, T.W., & Barker, R.A. (2004). The cognitive ability of an incident cohort of Parkinson’s patients in the UK. The CamPaIGN study. Brain, 127(Pt 3), 550560. doi:10.1093/brain/awh067
Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., & Raichle, M.E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 96739678.
Fox, M.D., Snyder, A.Z., Vincent, J.L., & Raichle, M.E. (2007). Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron, 56(1), 171184. doi:S0896-6273(07)00666-6 [pii]
Fox, P.T., Laird, A.R., Fox, S.P., Fox, P.M., Uecker, A.M., Crank, M., & Lancaster, J.L. (2005). BrainMap taxonomy of experimental design: Description and evaluation. Human Brain Mapping, 25(1), 185198. doi:10.1002/hbm.20141
Fransson, P., & Marrelec, G. (2008). The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis. Neuroimage, 42(3), 11781184.
Fudge, J.L., Breitbart, M.A., Danish, M., & Pannoni, V. (2005). Insular and gustatory inputs to the caudal ventral striatum in primates. Journal of Comparitive Neurology, 490(2), 101118. doi:10.1002/cne.20660
Greicius, M.D., Krasnow, B., Reiss, A.L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253258. doi:10.1073/pnas.0135058100
Huang, C., Mattis, P., Tang, C., Perrine, K., Carbon, M., & Eidelberg, D. (2007). Metabolic brain networks associated with cognitive function in Parkinson’s disease. Neuroimage, 34(2), 714723. doi:10.1016/j.neuroimage.2006.09.003
Janes, A.C., Farmer, S., Frederick, B., Nickerson, L.D., & Lukas, S.E. (2014). An increase in tobacco craving is associated with enhanced medial prefrontal cortex network coupling. PLoS One, 9(2), e88228. doi:10.1371/journal.pone.0088228
Janvin, C., Aarsland, D., Larsen, J.P., & Hugdahl, K. (2003). Neuropsychological profile of patients with Parkinson’s disease without dementia. Dementia and Geriatric Cognitive Disorders, 15(3), 126131. doi:68483
Janvin, C., Larsen, J.P., Aarsland, D., & Hugdahl, K. (2006). Subtypes of mild cognitive impairment in Parkinson’s disease: Progression to dementia. Movement Disorders, 21(9), 13431349. doi:10.1002/mds.20974
Jilka, S.R., Scott, G., Ham, T., Pickering, A., Bonnelle, V., Braga, R.M., & Sharp, D.J. (2014). Damage to the salience network and interactions with the default mode network. Journal of Neuroscience, 34(33), 1079810807. doi:10.1523/JNEUROSCI.0518-14.2014
Kelly, A.M., Uddin, L.Q., Biswal, B.B., Castellanos, F.X., & Milham, M.P. (2008). Competition between functional brain networks mediates behavioral variability. Neuroimage, 39(1), 527537. doi:10.1016/j.neuroimage.2007.08.008
Kish, S.J., Shannak, K., & Hornykiewicz, O. (1988). Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. New England Journal of Medicine, 318(14), 876880. doi:10.1056/NEJM198804073181402
Klepac, N., Trkulja, V., Relja, M., & Babic, T. (2008). Is quality of life in non-demented Parkinson’s disease patients related to cognitive performance? A clinic-based cross-sectional study. European Journal of Neurology, 15(2), 128133. doi:10.1111/j.1468-1331.2007.02011.x
Kortte, K.B., Horner, M.D., & Windham, W.K. (2002). The trail making test, part B: Cognitive flexibility or ability to maintain set? Applied Neuropsychology, 9(2), 106109. doi:10.1207/S15324826AN0902_5
Krajcovicova, L., Mikl, M., Marecek, R., & Rektorova, I. (2012). The default mode network integrity in patients with Parkinson’s disease is levodopa equivalent dose-dependent. Journal of Neural Transmission, 119(4), 443454. doi:10.1007/s00702-011-0723-5
Kudlicka, A., Clare, L., & Hindle, J.V. (2011). Executive functions in Parkinson’s disease: Systematic review and meta-analysis. Movement Disorders, 26(13), 23052315. doi:10.1002/mds.23868
Laird, A.R., Fox, P.M., Eickhoff, S.B., Turner, J.A., Ray, K.L., McKay, D.R., & Fox, P.T. (2011). Behavioral interpretations of intrinsic connectivity networks. Journal of Cognitive Neuroscience, 23(12), 40224037. doi:10.1162/jocn_a_00077
Laird, A.R., Lancaster, J.L., & Fox, P.T. (2005). BrainMap: The social evolution of a human brain mapping database. Neuroinformatics, 3(1), 6578. doi:NI:3:1:065 [pii]
Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863. doi:10.3389/fpsyg.2013.00863
Leech, R., & Sharp, D.J. (2014). The role of the posterior cingulate cortex in cognition and disease. Brain, 137(Pt 1), 1232. doi:10.1093/brain/awt162
Lewis, S.J., Cools, R., Robbins, T.W., Dove, A., Barker, R.A., & Owen, A.M. (2003). Using executive heterogeneity to explore the nature of working memory deficits in Parkinson’s disease. Neuropsychologia, 41(6), 645654.
Lewis, S.J., Dove, A., Robbins, T.W., Barker, R.A., & Owen, A.M. (2003). Cognitive impairments in early Parkinson’s disease are accompanied by reductions in activity in frontostriatal neural circuitry. The Journal of Neuroscience, 23(15), 63516356. doi:23/15/6351 [pii]
Lewis, S.J., Slabosz, A., Robbins, T.W., Barker, R.A., & Owen, A.M. (2005). Dopaminergic basis for deficits in working memory but not attentional set-shifting in Parkinson’s disease. Neuropsychologia, 43(6), 823832. doi:S0028-3932(04)00266-0 [pii]
Mamikonyan, E., Moberg, P.J., Siderowf, A., Duda, J.E., Have, T.T., Hurtig, H.I., & Weintraub, D. (2009). Mild cognitive impairment is common in Parkinson’s disease patients with normal Mini-Mental State Examination (MMSE) scores. Parkinsonism & Related Disorders, 15(3), 226231. doi:10.1016/j.parkreldis.2008.05.006
Martinu, K., Degroot, C., Madjar, C., Strafella, A.P., & Monchi, O. (2012). Levodopa influences striatal activity but does not affect cortical hyper-activity in Parkinson’s disease. European Journal of Neuroscience, 35, 572583. doi:10.1111/j.1460-9568.2011
Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences, 15(10), 483506. doi:S1364-6613(11)00171-9 [pii]
Menon, V., & Uddin, L.Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Structure & Function, 214(5-6), 655667. doi:10.1007/s00429-010-0262-0
Middleton, F.A., & Strick, P.L. (2000). Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Research. Brain Research Reviews, 31(2-3), 236250. doi:S0165017399000405 [pii]
Miller, I.N., Neargarder, S., Risi, M.M., & Cronin-Golomb, A. (2013). Frontal and posterior subtypes of neuropsychological deficit in Parkinson’s disease. Behavioral Neuroscience, 127(2), 175183. doi:10.1037/a0031357
Mitrushina, M., Satz, P., Chervinsky, A., & D’Elia, L. (1991). Performance of four age groups of normal elderly on the Rey Auditory-Verbal Learning Test. Journal of Clinical Psychology, 47(3), 351357.
Monchi, O., Petrides, M., Mejia-Constain, B., & Strafella, A.P. (2006). Cortical activity in Parkinson’s disease during executive processing depends on striatal involvement. Brain, 130(Pt 1), 233244. doi:awl326 [pii]
Moustafa, A.A., Krishna, R., Eissa, A.M., & Hewedi, D.H. (2013). Factors underlying probabilistic and deterministic stimulus-response learning performance in medicated and unmedicated patients with Parkinson’s disease. Neuropsychology, 27(4), 498510. doi:2013-25138-010 [pii]
Narayanan, N.S., Rodnitzky, R.L., & Uc, E.Y. (2013). Prefrontal dopamine signaling and cognitive symptoms of Parkinson’s disease. Reviews in the Neurosciences, 24(3), 267278. doi:10.1515/revneuro-2013-0004
Poletti, M., & Bonuccelli, U. (2013). Acute and chronic cognitive effects of levodopa and dopamine agonists on patients with Parkinson’s disease: A review. Therapeutic Advances in Psychopharmacology, 3(2), 101113. doi:10.1177/2045125312470130
Postuma, R.B., & Dagher, A. (2006). Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cerebral Cortex, 16(10), 15081521. doi:bhj088 [pii]
Putcha, D., Ross, R.S., Cronin-Golomb, A., Janes, A.C., & Stern, C.E. (2015). Altered intrinsic functional coupling between core neurocognitive networks in Parkinson’s disease. Neuroimage. Clinical, 7, 449455. doi:10.1016/j.nicl.2015.01.012
Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., & Shulman, G.L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676682.
Ravina, B., Marek, K., Eberly, S., Oakes, D., Kurlan, R., Ascherio, A., & Shoulson, I. (2012). Dopamine transporter imaging is associated with long-term outcomes in Parkinson’s disease. Movement Disorders, 27(11), 13921397. doi:10.1002/mds.25157
Rey, A. (1964). L’examen clinique en psychologie. Paris: Presses Universitaires de France.
Schendan, H.E., Tinaz, S., Maher, S.M., & Stern, C.E. (2013). Frontostriatal and mediotemporal lobe contributions to implicit higher-order spatial sequence learning declines in aging and Parkinson’s disease. Behavioral Neuroscience, 127(2), 204221. doi:2013-11369-003 [pii]
Seeley, W.W., Menon, V., Schatzberg, A.F., Keller, J., Glover, G.H., Kenna, H., & Greicius, M.D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27(9), 23492356. doi:27/9/2349 [pii]
Spreng, R.N., Mar, R.A., & Kim, A.S. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: A quantitative meta-analysis. Journal of Cognitive Neuroscience, 21(3), 489510. doi:10.1162/jocn.2008.21029
Sridharan, D., Levitin, D.J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 1256912574. doi:0800005105 [pii]
Strauss, E., Sherman, E., & Spreen, O. (2006). A compendium of neuropsychological tests: Administration, norms, and commentaryed (3rd ed.). Cambridge: Oxford University Press.
Tessitore, A., Esposito, F., Vitale, C., Santangelo, G., Amboni, M., Russo, A., & Tedeschi, G. (2012). Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease. Neurology, 79(23), 22262232. doi:WNL.0b013e31827689d6 [pii]
Tiffin, J., & Asher, E.J. (1948). The Purdue pegboard; Norms and studies of reliability and validity. Journal of Applied Psychology, 32(3), 234247.
Tinaz, S., Lauro, P., Hallett, M., & Horovitz, S.G. (2015). Deficits in task-set maintenance and execution networks in Parkinson’s disease. Brain Structure & Function. doi:10.1007/s00429-014-0981-8
Tinaz, S., Schendan, H.E., & Stern, C.E. (2008). Fronto-striatal deficit in Parkinson’s disease during semantic event sequencing. Neurobiology of Aging, 29(3), 397407. doi:S0197-4580(06)00400-3 [pii]
Tombaugh, T.N. (2004). Trail Making Test A and B: Normative data stratified by age and education. Archives of Clinical Neuropsychology, 19(2), 203214. doi:10.1016/S0887-6177(03)00039-8
Uc, E.Y., McDermott, M.P., Marder, K.S., Anderson, S.W., Litvan, I., Como, P.G., … Parkinson Study Group DATATOP Investigators. (2009). Incidence of and risk factors for cognitive impairment in an early Parkinson disease clinical trial cohort. Neurology, 73(18), 14691477. doi:10.1212/WNL.0b013e3181bf992f
Uc, E.Y., Rizzo, M., Anderson, S.W., Qian, S., Rodnitzky, R.L., & Dawson, J.D. (2005). Visual dysfunction in Parkinson disease without dementia. Neurology, 65(12), 19071913. doi:01.wnl.0000191565.11065.11 [pii]
van Eimeren, T., Monchi, O., Ballanger, B., & Strafella, A.P. (2009). Dysfunction of the default mode network in Parkinson disease: A functional magnetic resonance imaging study. Archives of Neurology, 66(7), 877883. doi:66/7/877 [pii]
Weissman, D.H., Roberts, K.C., Visscher, K.M., & Woldorff, M.G. (2006). The neural bases of momentary lapses in attention. Nature Neuroscience, 9(7), 971978. doi:10.1038/nn1727
Williams-Gray, C.H., Evans, J.R., Goris, A., Foltynie, T., Ban, M., Robbins, T.W., & Barker, R.A. (2009). The distinct cognitive syndromes of Parkinson’s disease: 5 year follow-up of the CamPaIGN cohort. Brain, 132(Pt 11), 29582969. doi:awp245 [pii]



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed