Skip to main content Accessibility help
×
Home

Posterior Cerebellar Volume and Executive Function in Young Adults With Congenital Heart Disease

  • Eric S. Semmel (a1), Vonetta M. Dotson (a1), Thomas G. Burns (a2), William T. Mahle (a2) (a3) and Tricia Z. King (a1)...

Abstract

Objectives: As the number of adolescents and young adults (AYAs) surviving congenital heart disease (CHD) grows, studies of long-term outcomes are needed. CHD research documents poor executive function (EF) and cerebellum (CB) abnormalities in children. We examined whether AYAs with CHD exhibit reduced EF and CB volumes. We hypothesized a double dissociation such that the posterior CB is related to EF while the anterior CB is related to motor function. We also investigated whether the CB contributes to EF above and beyond processing speed. Methods: Twenty-two AYAs with CHD and 22 matched healthy controls underwent magnetic resonance imaging and assessment of EF, processing speed, and motor function. Volumetric data were calculated using a cerebellar atlas (SUIT) developed for SPM. Group differences were compared with t tests, relationships were tested with Pearson’s correlations and Fisher’s r to z transformation, and hierarchical regression was used to test the CB’s unique contributions to EF. Results: CHD patients had reduced CB total, lobular, and white matter volume (d=.52–.99) and poorer EF (d=.79–1.01) compared to controls. Significant correlations between the posterior CB and EF (r=.29–.48) were identified but there were no relationships between the anterior CB and motor function nor EF. The posterior CB predicted EF above and beyond processing speed (ps<.001). Conclusions: This study identified a relationship between the posterior CB and EF, which appears to be particularly important for inhibitory processes and abstract reasoning. The unique CB contribution to EF above and beyond processing speed alone warrants further study. (JINS, 2018, 24, 939–948)

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Posterior Cerebellar Volume and Executive Function in Young Adults With Congenital Heart Disease
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Posterior Cerebellar Volume and Executive Function in Young Adults With Congenital Heart Disease
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Posterior Cerebellar Volume and Executive Function in Young Adults With Congenital Heart Disease
      Available formats
      ×

Copyright

Corresponding author

Correspondence and reprint requests to: Tricia Z. King, Department of Psychology, Georgia State University, P.O. Box 5010, Atlanta, GA 30302-5010. E-mail: tzking@gsu.edu

References

Hide All
Ailion, A.S., King, T.Z., Wang, L., Fox, M.E., Mao, H., Morris, R.M., && Crosson, B. (2016). Cerebellar atrophy in adult survivors of childhood cerebellar tumor. Journal of the International Neuropsychological Society, 22(5), 501511. doi: 10.1017/S1355617716000138
Alexander, G.E., DeLong, M.R., & Strick, P.L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357381. doi: 10.1146/annurev.ne.09.030186.002041
Allin, M., Matsumoto, H., Santhouse, A.M., Nosarti, C., AlAsady, M.H.S., Stewart, A.L., & Murray, R.M. (2001). Cognitive and motor function and the size of the cerebellum in adolescents born very pre-term. Brain, 124(1), 6066. doi: 10.1093/brain/124.1.60
Aron, A.R., Fletcher, P.C., Bullmore, E.T., Sahakian, B.J., & Robbins, T.W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6(2), 115116. doi: 10.1038/nn1003
Barker, P.C., Nowak, C., King, K., Mosca, R.S., Bove, E.L., & Goldberg, C.S. (2005). Risk factors for cerebrovascular events following fontan palliation in patients with a functional single ventricle. American Journal of Cardiology, 96(4), 587591. doi: 10.1016/j.amjcard.2005.04.025
Beca, J., Gunn, J.K., Coleman, L., Hope, A., Reed, P.W., Hunt, R.W., & Shekerdemian, L.S. (2013). New white matter brain injury after infant heart surgery is associated with diagnostic group and the use of circulatory arrest. Circulation, 127(9), 971979. doi: 10.1161/CIRCULATIONAHA.112.001089
Bellebaum, C., & Daum, I. (2007). Cerebellar involvement in executive control. Cerebellum, 6(3), 184192. doi: 10.1080/14734220601169707
Bellinger, D.C., Wypij, D., Rivkin, M.J., DeMaso, D.R., Robertson, R.L. Jr., Dunbar-Masterson, C., & Newburger, J.W. (2011). Adolescents with d-transposition of the great arteries corrected with the arterial switch procedure: Neuropsychological assessment and structural brain imaging. Circulation, 124(12), 13611369. doi: 10.1161/CIRCULATIONAHA.111.026963
Bergemann, A., Hansen, J.H., Rotermann, I., Voges, I., Scheewe, J., Otto-Morris, C., & Kramer, H.H. (2015). Neuropsychological performance of school-aged children after staged surgical palliation of hypoplastic left heart syndrome. European Journal of Cardio-thoracic Surgery, 47(5), 803811. doi: 10.1093/ejcts/ezu299
Bolduc, M.E., du Plessis, A.J., Sullivan, N., Guizard, N., Zhang, X., Robertson, R.L., && Limperopoulos, C. (2012). Regional cerebellar volumes predict functional outcome in children with cerebellar malformations. Cerebellum, 11(2), 531542. doi: 10.1007/s12311-011-0312-z
Bostan, A.C., Dum, R.P., & Strick, P.L. (2010). The basal ganglia communicate with the cerebellum. Proceedings of the National Academy of Sciences of the United States of America, 107(18), 84528456. doi: 10.1073/pnas.1000496107
Brewster, R.C., King, T.Z., Burns, T.G., Drossner, D.M., & Mahle, W.T. (2015). White matter integrity dissociates verbal memory and auditory attention span in emerging adults with congenital heart disease. Journal of the International Neuropsychological Society, 21(1), 2233. doi: 10.1017/S135561771400109X
Burgess, P.W., & Shallice, T. (1996). Response suppression, initiation and strategy use following frontal lobe lesions. Neuropsychologia, 34(4), 263272. doi:Doi 10.1016/0028-3932(95)00104-2
Caligiore, D., Pezzulo, G., Baldassarre, G., Bostan, A.C., Strick, P.L., Doya, K., & Herreros, I. (2017). Consensus paper: Towards a systems-level view of cerebellar function: The interplay between cerebellum, basal ganglia, and cortex. Cerebellum, 16(1), 203229. doi: 10.1007/s12311-016-0763-3
Cassidy, A.R., White, M.T., DeMaso, D.R., Newburger, J.W., & Bellinger, D.C. (2015). Executive function in children and adolescents with critical cyanotic congenital heart disease. Journal of the International Neuropsychological Society, 21(1), 3449. doi: 10.1017/S1355617714001027
Cohen, J. (1988). Statistical power analysis for the behavioral science (2nd ed.). Hillsdale, NJ: Lawrence Earlbaum Associates.
Daliento, L., Mapelli, D., Russo, G., Scarso, P., Limongi, F., Iannizzi, P., & Volpe, B. (2005). Health related quality of life in adults with repaired tetralogy of Fallot: Psychosocial and cognitive outcomes. Heart, 91(2), 213218. doi: 10.1136/hrt.2003.029280
Delis, D.C., Kaplan, E., & Kramer, J.H. (2001). Delis-Kaplan Executive Function System (D-KEFS). San Antonio, TX: Pearson.
Dennis, M., & Barnes, M.A. (2010). The cognitive phenotype of spina bifida meningomyelocele. Developmental Disabilities Research Reviews, 16(1), 3139. doi: 10.1002/ddrr.89
Dennis, M., Francis, D.J., Cirino, P.T., Schachar, R., Barnes, M.A., & Fletcher, J.M. (2009). Why IQ is not a covariate in cognitive studies of neurodevelopmental disorders. Journal of the International Neuropsychological Society, 15(3), 331343. doi: 10.1017/S1355617709090481
Diedrichsen, J. (2006). A spatially unbiased atlas template of the human cerebellum. Neuroimage, 33(1), 127138. doi: 10.1016/j.neuroimage.2006.05.056
du Plessis, A.J. (1999). Mechanisms of brain injury during infant cardiac surgery. Seminars in Pediatric Neurology, 6(1), 3247. doi: 10.1016/s1071-9091(99)80045-x
Gaynor, J.W., Gerdes, M., Nord, A.S., Bernbaum, J., Zackai, E., Wernovsky, G., & Jarvik, G.P. (2010). Is cardiac diagnosis a predictor of neurodevelopmental outcome after cardiac surgery in infancy? The Journal of Thoracic and Cardiovascular Surgery, 140(6), 12301237. doi: 10.1016/j.jtcvs.2010.07.069
Geyer, S., Norozi, K., Buchhorn, R., & Wessel, A. (2009). Chances of employment in women and men after surgery of congenital heart disease: Comparisons between patients and the general population. Congenital Heart Disease, 4(1), 2533. doi: 10.1111/j.1747-0803.2008.00239.x
Gilboa, S.M., Salemi, J.L., Nembhard, W.N., Fixler, D.E., & Correa, A. (2010). Mortality resulting from congenital heart disease among children and adults in the United States, 1999 to 2006. Circulation, 122(22), 22542263. doi: 10.1161/CIRCULATIONAHA.110.947002
Gioia, G.A., Isquith, P.K., Guy, S.C., & Kenworthy, L. (2000). Behavior rating inventory of executive function. Odessa, FL: Psychological Assessment Resources.
Heyder, K., Suchan, B., & Daum, I. (2004). Cortico-subcortical contributions to executive control. Acta Psychologica, 115(2-3), 271289. doi: 10.1016/j.actpsy.2003.12.010
Hoffman, J.I., Kaplan, S., & Liberthson, R.R. (2004). Prevalence of congenital heart disease. American Heart Journal, 147(3), 425439. doi: 10.1016/j.ahj.2003.05.003
Hoshi, E., Tremblay, L., Feger, J., Carras, P.L., & Strick, P.L. (2005). The cerebellum communicates with the basal ganglia. Nature Neuroscience, 8(11), 14911493. doi: 10.1038/nn1544
Ilardi, D., Ono, K.E., McCartney, R., Book, W., & Stringer, A.Y. (2017). Neurocognitive functioning in adults with congenital heart disease. Congenital Heart Disease, 12(2), 166173. doi: 10.1111/chd.12434
Jackson, J.L., Misiti, B., Bridge, J.A., Daniels, C.J., & Vannatta, K. (2015). Emotional functioning of adolescents and adults with congenital heart disease: A meta-analysis. Congenital Heart Disease, 10(1), 212. doi: 10.1111/chd.12178
Juranek, J., Dennis, M., Cirino, P.T., El-Messidi, L., & Fletcher, J.M. (2010). The cerebellum in children with spina bifida and Chiari II malformation: Quantitative volumetrics by region. Cerebellum, 9(2), 240248. doi: 10.1007/s12311-010-0157-x
Kalbfleisch, M.L., Van Meter, J.W., & Zeffiro, T.A. (2007). The influences of task difficulty and response correctness on neural systems supporting fluid reasoning. Cognitive Neurodynamics, 1(1), 7184. doi: 10.1007/s11571-006-9007-4
Karsdorp, P.A., Everaerd, W., Kindt, M., & Mulder, B.J. (2007). Psychological and cognitive functioning in children and adolescents with congenital heart disease: A meta-analysis. Journal of Pediatric Psychology, 32(5), 527541. doi: 10.1093/jpepsy/jsl047
King, T.Z., Na, S., & Mao, H. (2015). Neural underpinnings of working memory in adult survivors of childhood brain tumors. Journal of the International Neuropsychological Society, 21(7), 494505. doi: 10.1017/S135561771500051X
King, T.Z., Smith, K.M., Burns, T.G., Sun, B., Shin, J., Jones, R.A., & Mahle, W.T. (2016). fMRI investigation of working memory in adolescents with surgically treated congenital heart disease. Applied Neuropsychology. Child, 6(1), 721. doi: 10.1080/21622965.2015.1065185
Klouda, L., Franklin, W.J., Saraf, A., Parekh, D.R., & Schwartz, D.D. (2017). Neurocognitive and executive functioning in adult survivors of congenital heart disease. Congenital Heart Disease, 12(1), 9198. doi: 10.1111/chd.12409
Koziol, L.F., Budding, D., Andreasen, N., D’Arrigo, S., Bulgheroni, S., Imamizu, H., & Yamazaki, T. (2014). Consensus paper: The cerebellum's role in movement and cognition. Cerebellum, 13(1), 151177. doi: 10.1007/s12311-013-0511-x
Koziol, L.F., Budding, D.E., & Chidekel, D. (2010). Adaptation, expertise, and giftedness: Towards an understanding of cortical, subcortical, and cerebellar network contributions. Cerebellum, 9(4), 499529. doi: 10.1007/s12311-010-0192-7
Koziol, L.F., Budding, D.E., & Chidekel, D. (2012). From movement to thought: Executive function, embodied cognition, and the cerebellum. Cerebellum, 11(2), 505525. doi: 10.1007/s12311-011-0321-y
Licht, D.J., Wang, J., Silvestre, D.W., Nicolson, S.C., Montenegro, L.M., Wernovsky, G., & Detre, J.A. (2004). Preoperative cerebral blood flow is diminished in neonates with severe congenital heart defects. The Journal of Thoracic and Cardiovascular Surgery, 128(6), 841849. doi: 10.1016/j.jtcvs.2004.07.022
Limperopoulos, C., Bassan, H., Gauvreau, K., Robertson, R.L. Jr., Sullivan, N.R., Benson, C.B., & duPlessis, A.J. (2007). Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics, 120(3), 584593. doi: 10.1542/peds.2007-1041
Limperopoulos, C., Soul, J.S., Gauvreau, K., Huppi, P.S., Warfield, S.K., Bassan, H., & du Plessis, A.J. (2005). Late gestation cerebellar growth is rapid and impeded by premature birth. Pediatrics, 115(3), 688695. doi: 10.1542/peds.2004-1169
Mahle, W.T., Clancy, R.R., Moss, E.M., Gerdes, M., Jobes, D.R., & Wernovsky, G. (2000). Neurodevelopmental outcome and lifestyle assessment in school-aged and adolescent children with hypoplastic left heart syndrome. Pediatrics, 105(5), 10821089. doi: 10.1542/peds.105.5.1082
Mahle, W.T., Tavani, F., Zimmerman, R.A., Nicolson, S.C., Galli, K.K., Gaynor, J.W., & Kurth, C.D. (2002). An MRI study of neurological injury before and after congenital heart surgery. Circulation, 106(12 Suppl 1), I109I114.
Mahone, E.M., Zabel, T.A., Levey, E., Verda, M., & Kinsman, S. (2002). Parent and self-report ratings of executive function in adolescents with myelomeningocele and hydrocephalus. Child Neuropsychology, 8(4), 258270. doi: 10.1076/chin.8.4.258.13510
Marelli, A.J., Mackie, A.S., Ionescu-Ittu, R., Rahme, E., & Pilote, L. (2007). Congenital heart disease in the general population: Changing prevalence and age distribution. Circulation, 115(2), 163172. doi: 10.1161/CIRCULATIONAHA.106.627224
Martin, S., & Kitzman, P. (2017). Evidence of cerebellar dysfunction in children with myelomeningocele. Physical Medicine and Rehabilitation - International, 4(1).
Mebius, M.J., Kooi, E.M.W., Bilardo, C.M., & Bos, A.F. (2017). Brain injury and neurodevelopmental outcome in congenital heart disease: A systematic review. Pediatrics, 140(1) doi: 10.1542/peds.2016-4055
Middleton, F., & Strick, P. (1994). Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science, 266(5184), 458461. doi: 10.1126/science.7939688
Murdaugh, D.L., King, T.Z., & O’Toole, K. (2017). The efficacy of a pilot pediatric cognitive remediation summer program to prepare for transition of care. Child Neuropsychology, 24, 121. doi: 10.1080/09297049.2017.1391949
Neau, J.P., Arroyo-Anllo, E., Bonnaud, V., Ingrand, P., & Gil, R. (2000). Neuropsychological disturbances in cerebellar infarcts. Acta Neurologica Scandinavica, 102(6), 363370.
Ortinau, C., Beca, J., Lambeth, J., Ferdman, B., Alexopoulos, D., Shimony, J.S., & Inder, T. (2012). Regional alterations in cerebral growth exist preoperatively in infants with congenital heart disease. The Journal of Thoracic and Cardiovascular Surgery, 143(6), 12641270. doi: 10.1016/j.jtcvs.2011.10.039
Owen, M., Shevell, M., Donofrio, M., Majnemer, A., McCarter, R., Vezina, G., & Limperopoulos, C. (2014). Brain volume and neurobehavior in newborns with complex congenital heart defects. Journal of Pediatrics, 164(5), 11211127 e1121. doi: 10.1016/j.jpeds.2013.11.033
Petrosini, L., Leggio, M.G., & Molinari, M. (1998). The cerebellum in the spatial problem solving: A co-star or a guest star? Progress in Neurobiology, 56(2), 191210.
Peyvandi, S., De Santiago, V., Chakkarapani, E., Chau, V., Campbell, A., Poskitt, K.J., & McQuillen, P. (2016). Association of Prenatal Diagnosis of Critical Congenital Heart Disease With Postnatal Brain Development and the Risk of Brain Injury. JAMA Pediatrics, 170(4), e154450. doi: 10.1001/jamapediatrics.2015.4450
Sanfilipo, M.P., Benedict, R.H., Zivadinov, R., & Bakshi, R. (2004). Correction for intracranial volume in analysis of whole brain atrophy in multiple sclerosis: The proportion vs. residual method. Neuroimage, 22(4), 17321743. doi: 10.1016/j.neuroimage.2004.03.037
Sanz, J.H., Berl, M.M., Armour, A.C., Wang, J., Cheng, Y.I., & Donofrio, M.T. (2017). Prevalence and pattern of executive dysfunction in school age children with congenital heart disease. Congenital Heart Disease, 12(2), 202209. doi: 10.1111/chd.12427
Schall, U., Johnston, P., Lagopoulos, J., Jüptner, M., Jentzen, W., Thienel, R., & Ward, P.B. (2003). Functional brain maps of Tower of London performance: A positron emission tomography and functional magnetic resonance imaging study. Neuroimage, 20(2), 11541161. doi: 10.1016/s1053-8119(03)00338-0
Schoenberg, M.R., & Scott, J.G. (2011). The little black book of neuropsychology: A syndrome-based approach. New York, NY: Springer.
Smith, A. (1982). Symbol Digit Modalities Test. Los Angeles, CA: Western Psychological Services.
Stoodley, C.J., & Schmahmann, J.D. (2010). Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex, 46(7), 831844. doi: 10.1016/j.cortex.2009.11.008
Sun, L., Macgowan, C.K., Sled, J.G., Yoo, S.J., Manlhiot, C., Porayette, P., & Seed, M. (2015). Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease. Circulation, 131(15), 13131323. doi: 10.1161/CIRCULATIONAHA.114.013051
Tyagi, M., Austin, K., Stygall, J., Deanfield, J., Cullen, S., & Newman, S.P. (2014). What do we know about cognitive functioning in adult congenital heart disease? Cardiology in the Young, 24(1), 1319. doi: 10.1017/S1047951113000747
van Rijen, E.H., Utens, E.M., Roos-Hesselink, J.W., Meijboom, F.J., van Domburg, R.T., Roelandt, J.R., & Verhulst, F.C. (2003). Psychosocial functioning of the adult with congenital heart disease: A 20-33 years follow-up. European Heart Journal, 24(7), 673683.
Vendrell, P., Junque, C., Pujol, J., Jurado, M.A., Molet, J., & Grafman, J. (1995). The role of prefrontal regions in the Stroop task. Neuropsychologia, 33(3), 341352.
Volpe, J.J. (2009). Cerebellum of the premature infant: Rapidly developing, vulnerable, clinically important. Journal of Child Neurology, 24(9), 10851104. doi: 10.1177/0883073809338067
von Rhein, M., Kugler, J., Liamlahi, R., Knirsch, W., Latal, B., & Kaufmann, L. (2014). Persistence of visuo-constructional and executive deficits in adolescents after open-heart surgery. Research in Developmental Disabilities, 36C, 303310. doi: 10.1016/j.ridd.2014.10.027
Wechsler, D. (2011). Wechsler Abbreviated Scale of Intelligence-Second Edition manual. Bloomington, MN: Pearson.
Williams, R.V., Ravishankar, C., Zak, V., Evans, F., Atz, A.M., Border, W.L.Pediatric Heart Network, I. (2010). Birth weight and prematurity in infants with single ventricle physiology: Pediatric heart network infant single ventricle trial screened population. Congenital Heart Disease, 5(2), 96103. doi: 10.1111/j.1747-0803.2009.00369.x
Wray, J. (2001). Congenital heart disease and cardiac surgery in childhood: Effects on cognitive function and academic ability. Heart, 85(6), 687691. doi: 10.1136/heart.85.6.687
Yang, Q., Chen, H., Correa, A., Devine, O., Mathews, T.J., & Honein, M.A. (2006). Racial differences in infant mortality attributable to birth defects in the United States, 1989-2002. Birth Defects Research . Part A, Clinical and Molecular Teratology, 76(10), 706713. doi: 10.1002/bdra.20308
Zeng, S., Zhou, Q.C., Zhou, J.W., Li, M., Long, C., & Peng, Q.H. (2015). Volume of intracranial structures on three-dimensional ultrasound in fetuses with congenital heart disease. Ultrasound in Obstetrics & Gynecology, 46(2), 174181. doi: 10.1002/uog.14677

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed