Skip to main content Accessibility help

Motor persistence and inhibition in autism and ADHD



The present study compared performance of children with Attention-Deficit/Hyperactivity Disorder (ADHD) and high functioning autism (HFA) with that of controls on 4 tasks assessing 2 components of motor control: motor response inhibition and motor persistence. A total of 136 children (52 ADHD, 24 HFA, 60 controls) ages 7 to 13 years completed 2 measures of motor inhibition (Conflicting Motor Response and Contralateral Motor Response Tasks) and 2 measures of motor persistence (Lateral Gaze Fixation and NEPSY Statue). After controlling for age, IQ, gender, and basic motor speed, children with ADHD performed significantly more poorly than controls on the Conflicting Motor Response and Contralateral Motor Response Tasks, as well as on Statue. In contrast, children with HFA achieved lower scores than controls only on measures of motor persistence, with no concomitant impairment on either motor inhibition task. These results are consistent with prior research that has demonstrated relatively spared motor inhibition in autism. The findings highlight the utility of brief assessments of motor control in delineating the unique neurobehavioral phenotypes of ADHD and HFA. (JINS, 2006, 12, 622–631.)


Corresponding author

Correspondence and reprint requests to: E. Mark Mahone, Ph.D., Department of Neuropsychology, Kennedy Krieger Institute, 1750 East Fairmount Avenue, Baltimore, MD 21231. E-mail:


Hide All


Acosta, M.T. & Pearl, P.L. (2004). Imaging data in autism: From structure to malfunction. Seminars in Pediatric Neurology, 11, 205213.
Ashtari, M., Kumra, S., Bhaskar, S.L., Clarke, T., Thaden, E., Cervellione, K.L., Rhinewine, J., Kane, J.M., Adesman, A., Milanaik, R., Maytal, J., Diamond, A., Szeszko, P., & Ardekani, B.A. (2005). Attention-deficit/hyperactivity disorder: A preliminary diffusion tensor imaging study. Biological Psychiatry, 57, 448455.
Barkley, R.A. (1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychological Bulletin, 121, 6594.
Barkley, R.A. (2000). Genetics of childhood disorders: XVII. ADHD, Part 1: The executive functions and ADHD. Journal of the American Academy of Child and Adolescent Psychiatry, 39, 10641068.
Barkley, R.A., Grodzinsky, G., & DuPaul, G.J. (1992). Frontal lobe functions in attention deficit disorder with and without hyperactivity: A review and research report. Journal of Abnormal Child Psychology, 20, 163188.
Berlin, L., Bohlin, G., Nyberg, L., & Janols, L. (2004). How well do measures of inhibition and other executive functions discriminate between children with ADHD and controls? Child Neuropsychology, 10, 113.
Bradshaw, J.L. & Sheppard, D.M. (2000). The neurodevelopmental frontostriatal disorders: Evolutionary adaptiveness and anomalous lateralization. Brain and Language, 73, 297320.
Carte, E.T., Nigg, J.T., & Hinshew, S.P. (1996). Neuropsychological functioning, motor speed, and language processing in boys with and without ADHD. Journal of Abnormal Child Psychology, 24, 481498.
Castellanos, F.X. & Acosta, M.T. (2004). The neuroanatomy of attention deficit/hyperactivity disorder. Revisita de Neurologia, 38 (Suppl. 1), S131S136.
Castellanos, F.X., Sonuga-Barke, E.J.S., Milham, M.P., & Tannock, R. (2006). Characterizing cognition in ADHD: Beyond executive dysfunction. Trends in Cognitive Sciences, 10, 117123.
Conners, C.K. (1997). Conners' Rating Scales–Revised. North Tonawanda, NY: Multi-Health Systems.
Christensen, A.L. (1975). Luria's neuropsychological investigation. New York: Spectrum.
Courchesne, E. & Pierce, K. (2005). Brain overgrowth in autism during a critical time in development: Implications for frontal pyramidal neuron and interneuron development and connectivity. International Journal of Developmental Neuroscience, 23, 153170.
Denckla, M.B. (1996). Biological correlates of learning and attention: What is relevant to learning disability and attention-deficit hyperactivity disorder? Developmental and Behavioral Pediatrics, 17, 114119.
Denckla, M.B. (1985). Revised neurological examination for subtle signs. Psychopharmacology Bulletin, 21, 773800.
Denckla, M.B. & Rudel, R.G. (1978). Anomalies of motor development in hyperactive boys. Annals of Neurology, 3, 231233.
Devinsky, O. (2000). Right cerebral hemisphere dominance for a sense of corporeal and emotional self. Epilepsy and Behavior, 1, 6073.
Diamond, A. (2000). Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Development, 71, 4456.
DuPaul, G.J., Power, T.J., Anastopoulos, A.D., & Reid, R. (1998). ADHD Rating Scale-IV. New York: Guilford.
Feifel, D., Farber, R.H., Clementz, B.A., Perry, W., & Anllo-Vento, L. (2004). Inhibitory deficits in ocular motor behavior in adults with attention-deficit/hyperactivity disorder. Biological Psychiatry, 56, 333339.
Fisher, M. (1956). Left hemiplegia and motor impersistence. Journal of Nervous and Mental Disease, 123, 201218.
Fuster, J.M. (1997). The prefrontal cortex: Anatomy, physiology, and neuropsychology of the frontal lobe. New York: Lippincott-Raven.
Goldberg, M.C., Lasker, A.G., Zee, D.S., Garth, E., Tien, A., & Landa, R. (2002). Deficits in the initiation of eye movements in the absence of a visual target in adolescents with high functioning autism. Neuropsychologia, 1426, 111.
Griffith, E.M., Pennington, B.F., Wehner, E.A., & Rogers, S.J. (1999). Executive functions in young children with autism. Child Development, 70, 817832.
Harris, E.L., Schuerholz, L.J., Singer, H.S., Reader, M.J., Brown, J.E., Cox, C., Mohr, J., Chase, G.A., & Denckla, M.B. (1995). Executive function in children with Tourette syndrome and/or attention deficit hyperactivity disorder. Journal of the International Neuropsychological Society, 1, 511516.
Heilman, K.M., Watson, R.T., & Valenstein, E. (1993). Neglect and related disorders. In K.M. Heilman & E. Valenstein (Eds.), Clinical Neuropsychology (3rd ed.) (pp. 279236). New York: Oxford University Press.
Hughes, C. & Russell, J., (1993). Autistic children's difficulty with mental disengagement from an object: Its implication for theories of autism. Developmental Psychology, 29, 498510.
Hughes, C., Russell, J., & Robbins, T.W. (1994). Evidence for executive dysfunction in autism. Neuropsychologia, 32, 477492.
Kadesjo, B. & Gillberg, C. (1998). Attention deficits and clumsiness in Swedish 7-year-old children. Developmental Medicine and Child Neurology, 40, 796804.
Kaplan, B.J., Wilson, B.N., Dewey, D., & Crawford, S.G. (1998). DCD may not be a discrete disorder. Human Movement Science, 17, 471490.
Kertesz, A., Nicholson, I., Cancelliere, A., Kassa, K., & Black, S.E. (1985). Motor impersistence: A right-hemisphere syndrome. Neurology, 35, 662666.
Kleinhans, N., Akshoomoff, N., & Delis, D.C. (2005). Executive functions in autism and Asperger's disorder: Flexibility, fluency, and inhibition. Developmental Neuropsychology, 27, 379401.
Klin, A., Jones, W., Schultz, R., Volkmar, F., & Cohen, D. (2002a). Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Archives of General Psychiatry, 59, 809816.
Klin, A., Jones, W., Schultz, R., Volkmar, F., & Cohen, D. (2002b). Defining and quantifying the social phenotype in autism. American Journal of Psychiatry, 159, 895908.
Korkman, M., Kirk, U., & Kemp, S. (1998). NEPSY: A developmental neuropsychological assessment. San Antonio, TX: Psychological Corporation.
Lord, C., Risi, S., Lambrecht, L., Cook, E.H., Jr., Levanthal, B.L., DiLavore, P.C., Pickles, A., & Rutter, M. (2000). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30, 205223.
Lord, C., Rutter, M., Goode, S., Heemsbergen, J., Jordan, H., Mawhood, L., & Schopler, E. (1989). Autism diagnostic observation schedule: A standardized observation of communicative and social behavior. Journal of Autism and Developmental Disorders, 19, 185212.
Lord, C., Rutter, M., & LeCouteur, A. (1994). Autism Diagnostic Interview Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24, 659685.
McAlonan, G.M., Cheung, V., Cheung, C., Suckling, J., Lam, G.Y., Tai, K.S., Yip, L., Murphy, D.G., & Chua, S.E. (2005). Mapping the brain in autism. A voxel-based MRI study of volumetric differences and intercorrelations in autism. Brain, 128, 268276.
McPhillips, M. & Sheehy, N. (2004). Prevalence of persistent primary reflexes and motor problems in children with reading difficulties. Dyslexia, 10, 316338.
Minshew, N.J., Luna, B., & Sweeney, J. (1999). Oculomotor evidence for neocortical systems but not cerebellar dysfunction in autism. Neurology, 52, 917922.
Mostofsky, S.H., Cooper, K.L., Kates, W.R., Denckla, M.B., & Kaufmann, W.E. (2002). Smaller prefrontal and premotor volumes in boys with attention-deficit hyperactivity disorder. Biological Psychiatry, 52, 785794.
Mostofsky, S.H., Lasker, A.G., Cutting, L., Denckla, M.B., & Zee, D.S. (2001a). Oculomotor abnormalities in attention deficit hyperactivity disorder: A preliminary study. Neurology, 57, 423430.
Mostofsky, S.H., Lasker, A.G., Singer, H.S., Denckla, M.B., & Zee, D.S. (2001b). Oculomotor abnormalities in children with Tourette syndrome with and without ADHD. Journal of the American Academy of Child and Adolescent Psychiatry, 40, 14641472.
Mostofsky, S.H., Newschaffer, C.J., & Denckla, M.B. (2003). Overflow movements predict impaired response inhibition in children with ADHD. Perceptual and Motor Skills, 97, 13151331.
Mostofsky, S.H., Russell, E., Kofman, O., Carr, J., & Denckla, M.B. (2001c). Deficits in motor response inhibition and motor persistence in ADHD [abstract]. Journal of the International Neuropsychological Society, 7, 208.
Ozonoff, S. & Jensen, J. (1999). Brief report: Specific executive function profiles in three neurodevelopmental disorders. Journal of Autism and Developmental Disorders, 29, 171177.
Ozonoff, S. & Strayer, D.L. (1997). Inhibitory function in nonretarded children with autism. Journal of Autism and Developmental Disorders, 27, 5977.
Ozonoff, S., Strayer, D.L., McMahon, W.M., & Fillous, F. (1994). Executive function abilities in autism and Tourette syndrome: An information processing approach. Journal of Child Psychology and Psychiatry, 35, 10151032.
Palmen, S.J., Hulsoff Pol, H.E., Kemner, C., Schnack, H.G., Durston, S., Lahuis, B.E., Kahn, R.S., & Van Engeland, H. (2005). Increased gray-matter volume in medication-naive high-functioning children with autism spectrum disorder. Psychological Medicine, 35, 561570.
Pennington, B.F. (1997). Dimensions of executive function in normal and abnormal development. In N.A. Krasnegor, G.R. Lyon, & P.S. Goldman-Rakic (Eds.), Development of the prefrontal cortex: Evolution, neurobiology, and behavior (pp. 265281). Baltimore, MD: Brookes.
Pennington, B.F. & Ozonoff, S. (1996). Executive functions and developmental psychopathology. Journal of Child Psychology and Psychiatry, 37, 5187.
Pitcher, T.M., Piek, J.P., & Hay, D.A. (2003). Fine and gross motor ability in boys with attention deficit hyperactivity disorder. Developmental Medicine and Child Neurology, 45, 525535.
Quay, H.C. (1997). Inhibition and attention deficit hyperactivity disorder. Journal of Abnormal Child Psychology, 25, 713.
Reich, W., Welner, Z., & Herjanic, B. (1997). The Diagnostic Interview for Children and Adolescents-IV. North Tonawanda, NY: Multi-Health Systems.
Ross, R.G., Harris, J.G., Olincy, A., & Radant, A. (2000). Eye movement task measures inhibition and spatial working memory in adults with schizophrenia, ADHD, and a normal comparison group. Psychiatry Research, 35, 3542.
Roth, R.M. & Saykin, A.J. (2004). Executive dysfunction in attention-deficit/hyperactivity disorder: Cognitive and neuroimaging findings. Psychiatry Clinics of North America, 27, 8396.
Rubia, K., Oosterlaan, J., Sergeant, J.A., Brandeis, D., & Van Leeuwen, T. (1998). Inhibitory dysfunction in hyperactive boys. Behavioral Brain Research, 94, 2532.
Rubia, K., Russell, T., Overmeyer, S., Brammer, M.J., Bullmore, E.T., Sharma, T., Simmons, A., Williams, S.C.R., Giampietro, V., Andrew, C.M., & Taylor, E. (2001). Mapping motor inhibition: Conjunctive brain activations across different versions of go/no-go and stop tests. NeuroImage, 13, 250261.
Russell, J., Hala, S., & Hill, E.L. (2003). Mechanising an executive task: The performance of preschool children, children with autism and with moderate learning difficulties in the automated Windows Task. Cognitive Development, 18, 111137.
Russell, J., Jarold, C., & Hood, B. (1999). Two intact executive capacities in children with autism: Implications for the core executive dysfunctions in the disorder. Journal of Autism and Developmental Disorders, 29, 103112.
Russell, J., Mauther, N., Sharpe, S., & Tidwell, T. (1991). The “Windows task” as a measure of strategic deception in preschoolers and autistic subjects. British Journal of Developmental Psychology, 9, 101119.
Schachar, R., Mota, V.L., Logan, G.D., Tannock, R., & Klim, P. (2000). Confirmation of an inhibitory control deficit in attention-deficit/hyperactivity disorder. Journal of Abnormal Child Psychology, 28, 227235.
Schachar, R., Tannock, R., Mariott, M., & Logan, G. (1995). Deficient inhibitory control in attention deficit hyperactivity disorder. Journal of Abnormal Child Psychology, 23, 411347.
Seidman, L.J., Valera, E.M., & Makris, N. (2005). Structural brain imaging of attention-deficit/hyperactivity disorder. Biological Psychiatry, 57, 12631272.
Shapira, Y.A., Jones, M.H., & Sherman, S.P. (1980). Abnormal eye movements in hyperkinetic children with learning disability. Neuropadiatrie, 11, 3644.
Shue, K.L. & Douglas, V.I. (1992). Attention deficit hyperactivity disorder and the frontal lobe syndrome. Brain and Cognition, 20, 104124.
Steger, J., Imhof, K., Coutts, E., Gundelfinger, R., Steinhausen, H.C., & Brandeis, D. (2001). Attentional and neuromotor deficits in ADHD. Developmental Medicine and Child Neurology, 43, 172179.
Tantillo, M., Kesick, C.M., Hynd, G.W., & Dishman, R.K. (2002). The effects of exercise on children with attention-deficit hyperactivity disorder. Medicine and Science in Sports and Exercise, 34, 203212.
Takarae, Y., Minshew, N.J., Luna, B., Krisky, C.M., & Sweeney, J.A. (2004a). Pursuit eye movement deficits in autism. Brain, 127, 25842594.
Takarae, Y., Minshew, N.J., Luna, B., & Sweeney, J.A. (2004b). Oculomotor abnormalities parallel cerebellar histopathy in autism. Journal of Neurology, Neurosurgery, and Psychiatry, 75, 13591361.
Trommer, B.L., Hoeppner, J.B., Lorber, R., & Armstrong, K. (1988). The go-no-go paradigm in attention deficit disorder. Annals of Neurology, 24, 610614.
Vaidya, C.J., Bunge, S.A., Dudukovic, N.M., Zalecki, C.A., Elliott, G.R., & Gabrieli, J.D. (2005). Altered neural substrates of cognitive control in childhood ADHD: Evidence from functional magnetic resonance imaging. American Journal of Psychiatry, 162, 16051613.
Verfaellie, M. & Heilman, K.M. (1987). Response preparation and response inhibition after lesions of the medial frontal lobe. Archives of Neurology, 44, 12651271.
Voeller, K.S. & Heilman, K.M. (1988). Motor impersistence in children with attention deficit hyperactivity disorder: Evidence for right hemisphere dysfunction [abstract]. Annals of Neurology, 24, 323.
Watson, R.T., Miller, B.D., & Heilman, K.M. (1978). Nonsensory neglect. Annals of Neurology, 3, 505508.
Wechsler, D. (1991). Wechsler Intelligence Scale for Children, Third Edition (WISC-III). San Antonio, TX: Psychological Corporation.
Wechsler, D. (1992). Wechsler Individual Achievement Test (WIAT). San Antonio, TX: Psychological Corporation.
Wodka, E.L., Mahone, E.M., Blankner, J.G., Gidley Larson, J.C., Fotedar, S., Denckla, M.B., & Mostofsky, S.H., (in press). Evidence that response inhibition is a primary deficit in ADHD. Journal of Clinical and Experimental Neuropsychology.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed