Skip to main content Accessibility help
×
Home

Long-Term Effects of Resistance Exercise Training on Cognition and Brain Volume in Older Women: Results from a Randomized Controlled Trial

  • John R. Best (a1) (a2) (a3), Bryan K. Chiu (a1) (a2), Chun Liang Hsu (a1) (a2), Lindsay S. Nagamatsu (a4) and Teresa Liu-Ambrose (a1) (a2) (a3)...

Abstract

Aerobic exercise training has been shown to attenuate cognitive decline and reduce brain atrophy with advancing age. The extent to which resistance exercise training improves cognition and prevents brain atrophy is less known, and few studies include long-term follow-up cognitive and neuroimaging assessments. We report data from a randomized controlled trial of 155 older women, who engaged in 52 weeks of resistance training (either once- or twice-weekly) or balance-and-toning (twice-weekly). Executive functioning and memory were assessed at baseline, 1-year follow-up (i.e., immediately post-intervention), and 2-year follow-up. A subset underwent structural magnetic resonance imaging scans at those time points. At 2-year follow-up, both frequencies of resistance training promoted executive function compared to balance-and-toning (standardized difference [d]=.31–.48). Additionally, twice-weekly resistance training promoted memory (d=.45), reduced cortical white matter atrophy (d=.45), and increased peak muscle power (d=.27) at 2-year follow-up relative to balance-and-toning. These effects were independent of one another. These findings suggest resistance training may have a long-term impact on cognition and white matter volume in older women. (JINS, 2015, 21, 745–756)

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Long-Term Effects of Resistance Exercise Training on Cognition and Brain Volume in Older Women: Results from a Randomized Controlled Trial
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Long-Term Effects of Resistance Exercise Training on Cognition and Brain Volume in Older Women: Results from a Randomized Controlled Trial
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Long-Term Effects of Resistance Exercise Training on Cognition and Brain Volume in Older Women: Results from a Randomized Controlled Trial
      Available formats
      ×

Copyright

Corresponding author

Correspondence and reprint requests to: Teresa Liu-Ambrose, University of British Columbia, Department of Physical Therapy, Faculty of Medicine, 229–2177 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada. E-mail: teresa.ambrose@ubc.ca

References

Hide All
Adams, G.R., & Haddad, F. (1996). The relationships among IGF-1, DNA content, and protein accumulation during skeletal muscle hypertrophy. Journal of Applied Physiology, 81, 25092516.
Baker, L.D., Frank, L.L., Foster-Schubert, K., Green, P.S., Wilkinson, C.W., McTiernan, A., & Craft, S. (2010). Effects of aerobic exercise on mild cognitive impairment: A controlled trial. Archives of Neurology, 67, 7179. doi:10.1001/archneurol.2009.307
Banich, M.T. (2009). Executive function: The search for an integrated account. Current Directions in Psychological Science, 18, 8994.
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 289300.
Best, J.R., Nagamatsu, L.S., & Liu-Ambrose, T. (2014). Improvements to executive function during exercise training predict maintenance of physical activity over the following year. Frontiers in Human Neuroscience, 8, 353.
Bugg, J.M., & Head, D. (2011). Exercise moderates age-related atrophy of the medial temporal lobe. Neurobiology of Aging, 32, 506514. doi:10.1016/j.neurobiolaging.2009.03.008
Carlson, M.C., Xue, Q.L., Zhou, J., & Fried, L.P. (2009). Executive decline and dysfunction precedes declines in memory: The Women’s Health and Aging Study II. Journal of Gerontology Series A: Biological and Medical Sciences, 64, 110117. doi:10.1093/gerona/gln008
Carro, E., Nunez, A., Busiguina, S., & Torres-Aleman, I. (2000). Circulating insulin-like growth factor 1 mediates effects of exercise on the brain. Journal of Neuroscience, 20, 29262933.
Cassilhas, R.C., Lee, K.S., Fernandes, J., Oliveira, M.G., Tufik, S., Meeusen, R., de Mello, M.T. (2012). Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience, 202, 309317. doi:10.1016/j.neuroscience.2011.11.029
Cassilhas, R.C., Viana, V.A., Grassmann, V., Santos, R.T., Santos, R.F., Tufik, S., Mello, M.T. (2007). The impact of resistance exercise on the cognitive function of the elderly. Medicine and science in sports and exercise, 39, 14011407. doi:10.1249/mss.0b013e318060111f
Cockrell, J.R., & Folstein, M.F. (1988). Mini-Mental State Examination (MMSE). Psychopharmacological Bulletin, 24, 689692.
Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155.
Colcombe, S.J., Erickson, K.I., Scalf, P.E., Kim, J.S., Prakash, R., McAuley, E., & Kramer, A.F. (2006). Aerobic exercise training increases brain volume in aging humans. Journal of Gerontology Series A: Biological and Medical Sciences, 61A, 11661170.
Colcombe, S.J., & Kramer, A.F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychological Science, 14(2), 125130.
Collins, L.M., Schafer, J.L., & Kam, C.-M. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6, 330351.
Cotman, C.W., Berchtold, N.C., & Christie, L.-A. (2007). Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30, 464472. doi:10.1016/j.tins.2007.06.011
Davis, J.C., Marra, C.A., Beattie, B.L., Robertson, M.C., Najafzadeh, M., Graf, P., & Liu-Ambrose, T. (2010). Sustained cognitive and economic benefits of resistance training among community-dwelling senior women: A 1-year follow-up study of the Brain Power Study. Archives of Internal Medicine, 170, 20362038.
Desikan, R.S., Segonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., & Killiany, R.J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31, 968980. doi:10.1016/j.neuroimage.2006.01.021
Elobeid, M.A., Padilla, M.A., McVie, T., Thomas, O., Brock, D.W., Musser, B., & Allison, D.B. (2009). Missing data in randomized clinical trials for weight loss: Scope of the problem, state of the field, and performance of statistical methods. PloS One, 4, e6624. doi:10.1371/journal.pone.0006624
Enders, C.K. (2013). Dealing with missing data in developmental research. Child Development Perspectives, 7(1), 2731. doi:10.1111/cdep.12008
Erickson, K.I., Voss, M.W., Prakash, R.S., Basak, C., Szabo, A., Chaddock, L., & Kramer, A.F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of the United States of America, 108, 30173022. doi:10.1073/pnas.1015950108
Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., & Dale, A.M. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33, 341355.
Groll, D.L., To, T., Bombardier, C., & Wright, J.G. (2005). The development of a comorbidity index with physical function as the outcome. Journal of Clinical Epidemiology, 58, 595602.
Guralnik, J.M., Ferrucci, L., Simonsick, E.M., Salive, M.E., & Wallace, R.B. (1995). Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. New England Journal of Medicine, 332(9), 556562. doi:10.1056/NEJM199503023320902
Hillman, C.H., Erickson, K., & Kramer, A. (2008). Be smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews Neuroscience, 9, 5865.
Hsu, C.L., Nagamatsu, L.S., Davis, J.C., & Liu-Ambrose, T. (2012). Examining the relationship between specific cognitive processes and falls risk in older adults: A systematic review. Osteoporosis International, 23, 24092424. doi:10.1007/s00198-012-1992-z
Hu, L.-t., & Bentler, P.M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3, 424453.
Kramer, A.F., Hahn, S., Cohen, N.J., Banich, M.T., McAuley, E., Harrison, C.R., & Colcombe, S. (1999). Ageing, fitness and neurocognitive function. Nature, 400, 418419.
Lautenschlager, N.T., Cox, K.L., Flicker, L., Foster, J.K., van Bockxmeer, F.M., Xiao, J., & Almeida, O.P. (2008). Effect of physical activity on cognitive function in older adults at risk for alzheimer disease: A randomized trial. Journal of the American Medical Association, 300, 10271037. doi:10.1001/jama.300.9.1027
Liu-Ambrose, T., Nagamatsu, L.S., Graf, P., Beattie, B.L., Ashe, M.C., & Handy, T.C. (2010). Resistance training and executive functions: A 12-month randomized controlled trial. Archives of Internal Medicine, 170, 170178.
Liu-Ambrose, T., Nagamatsu, L.S., Voss, M.W., Khan, K.M., & Handy, T.C. (2012). Resistance training and functional plasticity of the aging brain: A 12-month randomized controlled trial. Neurobiology of Aging, 33, 16901698.
Lord, S.R., Menz, H.B., & Tiedemann, A. (2003). A physiologic profile approach to falls risk assessment and prevention. Physical Therapy, 83, 237252.
Mason, J.L., Ye, P., Suzuki, K., D’Ercole, A.J., & Matsushima, G.K. (2000). Insulin-like growth factor-1 inhibits mature ologodentrocyte apoptosis during primary demyelination. The Journal of Neuroscience, 20, 57035708.
McArdle, J.J. (2009). Latent variable modeling of differences and changes with longitudinal data. Annual Review of Psychology, 60, 577605. doi:10.1146/annurev.psych.60.110707.163612
Muthén, L.K., & Muthén, B.O. (2014). Mplus User’s Guide (6th ed.). Los Angeles, CA: Muthén & Muthén.
Nagamatsu, L.S., Handy, T.C., Hsu, C.L., Voss, M.W., & Liu-Ambrose, T.Y. (2012). Resistance training promotes cognitive and functional brain plasticity in seniors with probable mild cognitive impairment. Archives of Internal Medicine, 172, 666668.
O’Kusky, J., & Ye, P. (2012). Neurodevelopmental effects of insulin-like growth factor signaling. Frontiers in Neuroendocrinology, 33, 230251. doi:10.1016/j.yfrne.2012.06.002
Parkhouse, W.S., Coupland, D.C., Li, C., & Vanderhoek, K.J. (2000). IGF-1 bioavailability is increased by resistance training in older women with low bone mineral density. Mechanisms of Ageing and Development, 113, 7583.
Raz, N., Lindenberger, U., Rodrigue, K.M., Kennedy, K.M., Head, D., Williamson, A., & Acker, J.D. (2005). Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cerebral Cortex, 15, 16761689. doi:10.1093/cercor/bhi044
Reuter, M., Rosas, H.D., & Fischl, B. (2010). Highly accurate inverse consistent registration: A robust approach. Neuroimage, 53, 11811196.
Reuter, M., Schmansky, N.J., Rosas, H.D., & Fischl, B. (2012). Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage, 61, 14021418.
Salat, D.H., Greve, D.N., Pacheco, J.L., Quinn, B.T., Helmer, K.G., Buckner, R.L., Fischl, B. (2009). Regional white matter volume differences in nondemented aging and Alzheimer’s disease. Neuroimage, 44(4), 12471258. doi:10.1016/j.neuroimage.2008.10.030
Salat, D.H., Tuch, D.S., Greve, D.N., van der Kouwe, A.J., Hevelone, N.D., Zaleta, A.K., & Dale, A.M. (2005). Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiology of Aging, 26(8), 12151227. doi:10.1016/j.neurobiolaging.2004.09.017
Salthouse, T.A. (2011). Neuroanatomical substrates of age-related cognitive decline. Psychological Bulletin, 137, 753784. doi:10.1037/a0023262
Spreen, O., & Strauss, E. (1998). A compendium of neurological tests (2nd ed.). New York: Oxford University Press, Inc.
Stroop, J.R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643.
Ten Brinke, L.F., Bolandzadeh, N., Nagamatsu, L.S., Hsu, C.L., Davis, J.C., Miran-Khan, K., Liu-Ambrose, T. (2015). Aerobic exercise increases hippocampal volume in older women with probable mild cognitive impairment: A 6-month randomised controlled trial. British Journal of Sports Medicine, 49, 248254.
Thompson, P.M., Hayashi, K.M., De Zubicaray, G., Janke, A.L., Rose, S.E., Semple, J., & Doddrell, D.M. (2003). Dynamics of gray matter loss in Alzheimer’s disease. The Journal of Neuroscience, 23(3), 9941005.
Trejo, J.L., Carro, E., & Torres-Aleman, I. (2001). Circulating insulin-like growth factor 1mediates exercise-induced increases in the number of new neurons in the adult hippocampus. The Journal of Neuroscience, 21, 16281634.
Vale, R.G., de Oliveira, R.D., Pernambuco, C.S., de Meneses, Y.P., Novaes Jda., S., & de Andrade Ade, F. (2009). Effects of muscle strength and aerobic training on basal serum levels of IGF-1 and cortisol in elderly women. Archives of Gerontology and Geriatrics, 49, 343347. doi:10.1016/j.archger.2008.11.011
Voss, M.W., Heo, S., Prakash, R.S., Erickson, K.I., Alves, H., Chaddock, L., & Kramer, A.F. (2013). The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: Results of a one-year exercise intervention. Human Brain Mapping, 34, 29722985. doi:10.1002/hbm.22119
Voss, M.W., Vivar, C., Kramer, A.F., & van Praag, H. (2013). Bridging animal and human models of exercise-induced brain plasticity. Trends in Cognitive Sciences, 17, 525544. doi:10.1016/j.tics.2013.08.001
Walhovd, K.B., Fjell, A.M., Reinvang, I., Lundervold, A., Dale, A.M., Eilertsen, D.E., & Fischl, B. (2005). Effects of age on volumes of cortex, white matter and subcortical structures. Neurobiology of Aging, 26, 12611270. doi:10.1016/j.neurobiolaging.2005.05.020
Wechsler, D. (1980). Wechsler adult intelligence scale-revised manual. San Antonio, TX: Psychological Corporation.
Westlye, L.T., Walhovd, K.B., Dale, A.M., Bjornerud, A., Due-Tonnessen, P., Engvig, A., & Fjell, A.M. (2010). Life-span changes of the human brain white matter: Diffusion tensor imaging (DTI) and volumetry. Cerebral Cortex, 20, 20552068. doi:10.1093/cercor/bhp280
Ye, P., Carson, J.A., & D’Ercole, A.J. (1995). In vivo actions of insulin-like growth factor-1 (IGF-1) on brain myelination: Studies of IGF-1 and IGF binding protein-1 (IGFBP-1) transgenic mice. The Journal of Neuroscience, 15, 73447356.
Yesavage, J.A., Brink, T.L., Rose, T.L., Lum, O., Huang, V., Adey, M., Leirer, V.O. (1982). Development and validation of a geriatric depression screening scale: A preliminary report. Journal of Psychiatric Research, 17, 3749. doi:10.1016/0022-3956(82)90033-4

Keywords

Type Description Title
WORD
Supplementary materials

Best supplementary material
Tables S1-S4

 Word (141 KB)
141 KB

Long-Term Effects of Resistance Exercise Training on Cognition and Brain Volume in Older Women: Results from a Randomized Controlled Trial

  • John R. Best (a1) (a2) (a3), Bryan K. Chiu (a1) (a2), Chun Liang Hsu (a1) (a2), Lindsay S. Nagamatsu (a4) and Teresa Liu-Ambrose (a1) (a2) (a3)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed