Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-20T20:45:33.408Z Has data issue: false hasContentIssue false

Localization of cortical dysfunction based on auditory and visual naming performance

Published online by Cambridge University Press:  01 July 2009

MARLA J. HAMBERGER*
Affiliation:
Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York
WILLIAM T. SEIDEL
Affiliation:
Hastings-on-Hudson, New York
*
*Correspondence and reprint requests to: Marla J. Hamberger, Department of Neurology, The Neurological Institute, Columbia University, 710 West 168th Street, Box 100, New York, New York 10032. E-mail: mh61@columbia.edu

Abstract

Naming is generally considered a left-hemisphere function without precise localization. However, recent cortical stimulation studies demonstrate a modality-related anatomical dissociation, in that anterior temporal stimulation disrupts auditory description naming (“auditory naming”) but not visual object naming (“visual naming”), whereas posterior temporal stimulation disrupts naming on both tasks. We hypothesized that patients with anterior temporal abnormalities would exhibit impaired auditory naming, yet normal range visual naming, whereas patients with posterior temporal abnormalities would exhibit impaired performance on both tasks. Thirty-four patients with documented anterior temporal abnormalities and 14 patients with documented posterior temporal abnormalities received both naming tests. As hypothesized, patients with anterior temporal abnormalities demonstrated impaired auditory naming, yet normal range visual naming performance. Patients with posterior temporal abnormalities were impaired in visual naming; however, auditory naming scores were intact. Although these group patterns were statistically significant, on an individual basis, auditory–visual naming asymmetries better predicted whether individual patients had anterior or posterior temporal abnormalities. These behavioral findings are generally consistent with stimulation results, suggesting that modality specificity is inherent in the organization of language, with predictable neuroanatomical correlates. Results also carry clinical implications regarding localizing dysfunction, identifying and characterizing naming deficits, and potentially, in treating neurologically based language disorders. (JINS, 2009, 15, 529–535.)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anastasi, A. & Urbina, S. (1997). Norms and the meaning of test scores. In Anastasi, A. & Urbina, S. (Eds.), Psychological testing (pp. 4980). Upper Saddle River, NJ: Prentice Hall.Google Scholar
Bell, B., Seidenberg, M., Hermann, B., & Douville, K. (2003). Visual and auditory naming in patients with left or bilateral temporal lobe epilepsy. Epilepsy Research, 55, 2937.Google Scholar
Benton, A.L. & Hamsher, K. (1989). Multilingual Aphasia Examination. Iowa City, IA: AJA Associates.Google Scholar
Bookheimer, S.Y., Zeffiro, T.A., Blaxton, T., Gaillard, W., & Theodore, W.H. (1995). Regional cerebral blood flow during object naming and word reading. Human Brain Mapping, 3, 93106.Google Scholar
Caramazza, A., Hillis, A.E., Rapp, B., & Romani, C. (1990). The multiple semantic hypothesis: Multiple confusion? Cognitive Neuropsychology, 7, 161189.Google Scholar
Detre, J. (2004). fMRI: Applications in epilespy. Epilepsia, 45(Suppl 4), 2631.Google Scholar
Druks, J. & Shallice, T. (2000). Selective preservation of naming from description and the “restricted preverbal message”. Brain and Language, 72(2), 100128.Google Scholar
Emerson, R.G., Turner, C.A., Pedley, T.A., Walczak, T.S., & Forgione, M. (1995). Propagation patterns of temporal spikes. Electroencephalography and Clinical Neurophysiology, 94, 338348.Google Scholar
Fisch, B. (1999). Recording electrodes. In Fisch, B. (Ed.), Fisch and Spehlmann’s EEG primer (pp. 1931). Amsterdam, The Netherlands: Elsevier.Google Scholar
Geschwind, N. (1965). Disconnexion syndromes in animals and man, Part I. Brain, 88(2), 237294.Google Scholar
Goodglass, H. & Kaplan, E. (1983). The Boston Diagnostic Aphasia Examination. Philadelphia, PA: Lea & Febiger.Google Scholar
Goodglass, H. & Stuss, D.T. (1979). Naming to picture versus description in three aphasic subgroups. Cortex, 15(2), 199211.Google Scholar
Gordon, B. (1997). Models of naming. In Goodglass, H. & Wingfield, A. (Eds.), Anomia: Neuroanatomical and cognitive correlates. San Francisco, CA: Academic Press.Google Scholar
Haglund, M., Berger, M., Shamseldin, M., Lettich, E., & Ojemann, G.A. (1994). Cortical localization of temporal lobe language sites in patients with gliomas. Neurosurgery, 34(4), 567576.Google Scholar
Hamberger, M.J., Goodman, R.R., Perrine, K., & Tammy, T. (2001). Anatomical dissociation of auditory and visual naming in the lateral temporal cortex. Neurology, 56, 5661.CrossRefGoogle ScholarPubMed
Hamberger, M.J. & Seidel, W.T. (2003). Auditory and Visual Naming Tests: Normative and patient data for accuracy, response time and tip-of-the-tongue. Journal of the International Neuropsychology Society, 9, 479489.Google Scholar
Hermann, B.P., Jones, J., Sheth, R., & Seidenberg, M. (2007). Cognitive and magnetic resonance volumetric abnormalities in new-onset pediatric epilepsy. Seminars in Pediatric Neurology, 14(4), 173180.Google Scholar
Hermann, B.P., Wyler, A.R., Somes, G., & Clement, L. (1994). Dysnomia after left anterior temporal lobectomy without functional mapping: Frequency and correlates. Neurosurgery, 35(1), 5257.Google Scholar
Hillis, A.E., Rapp, B., & Caramazza, A. (1995). Constraining claims about theories of semantic memory: More on unitary versus multiple semantics. Cognitive Neuropsychology, 12(2), 175186.Google Scholar
Joseph, R. (1996). The left cerebral hemisphere: Language, aphasia, apraxia, alexia, agraphia, psychosis, the evolution of reading and writing, and the origin of thought. In Joseph, R. (Ed.), Neuropsychiatry, neuropsychology, and clinical neuroscience (pp. 118158). Baltimore, MD: Williams & Wilkins.Google Scholar
Kulas, J.F. & Naugle, R.I. (2003). Indications for neuropsychological assessment. Cleveland Clinical Journal of Medicine, 70(9), 785792.Google Scholar
Langfitt, J. & Rausch, R. (1996). Word-finding deficits persist after anterotemporal lobectomy. Archives of Neurology, 53, 7276.CrossRefGoogle ScholarPubMed
Lauro-Grotto, R., Piccini, C., & Shallice, T. (1997). Modality-specific operations in semantic dementia. Cortex, 5, 593622.Google Scholar
Lezak, M.D., Howieson, D.B., & Loring, D.W. (2004). Neuropsychological assessment (4th ed.). New York: Oxford University Press, Inc.Google Scholar
Malow, B.A., Blaxton, T.A., Susumu, S., Bookheimer, S., Kufta, C.V., Figlozzi, C.M., & Theodore, W.H. (1996). Cortical stimulation elicits regional distinctions in auditory and visual naming. Epilepsia, 37(3), 245252.Google Scholar
Marangolo, P., Rinaldi, M.C., & Sabatini, U. (2004). Modality-specific naming deficit: Cognitive and neural mechanisms implicated in naming to definition. Neurocase, 10(4), 280289.Google Scholar
McCarthy, R.A. & Warrington, E.K. (1988). Evidence for modality-specific meaning systems in the brain. Nature, 334(6181), 428430.Google Scholar
Nelson, H.E. (1982). The National Adult Reading Test (NART). Windsor, Berkshire, UK: NFER-Nelson.Google Scholar
Ojemann, G.A., Ojemann, J., Lettich, E., & Berger, M. (1989). Cortical language localization in left-dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. Journal of Neurosurgery, 71, 316326.Google Scholar
Riddoch, M.J., Humphreys, G.W., Coltheart, M., & Funnell, E. (1988). Semantic systems or system? Neuorpsychological evidence re-examined. Cognitive Neuropsychology, 5, 325.Google Scholar
Shallice, T. (1988). Specialization within the semantic system. Cognitive Neuropsychology, 5, 251261.Google Scholar
Sinai, A., Bowers, C.W., Crainiceanu, C.M., Boatman, D., Gordon, B., Lesser, R., Lencz, T., & Crone, N.E. (2005). Electrocorticographic high gamma activity versus electrical cortical stimulation mapping of naming. Brain, 128, 15561570.Google Scholar
Stafniak, P., Saykin, A.J., Sperling, M., Kester, M.S., Robinson, L.J., O’Connor, M.J., & Gur, R. (1990). Acute naming deficits following dominant temporal lobectomy: Prediction by age at 1st risk for seizures. Neurology, 40, 15091512.Google Scholar
Tranel, D., Damasion, A.R., & Damasio, H. (1997). On the neurology of naming. In Goodglass, H. & Wingfield, A. (Eds.), Anomia: Neuroanatomical and cognitive correlates (pp. 6590). San Francisco, CA: Morgan Kaufmann Publishers.Google Scholar
Wada, J. & Rasmussen, T. (1960). Intracarotid injection of sodium amytal for the lateralization of cerebral speech dominance: Experimental and clinical observations. Journal of Neurosurgery, 17, 266282.CrossRefGoogle Scholar
Walczak, T.S. & Jayakar, P. (1997). Interictal EEG. In Engel, J. & Pedley, T.A. (Eds.), Epilepsy: A comprehensive textbook (pp. 831848). Philadelphia, PA: Lippincott-Raven Publishers.Google Scholar
Wechsler, D. (1997). Wechsler Adult Intelligence Scale—III manual. New York: The Psychological Corporation.Google Scholar