Skip to main content Accessibility help
×
Home

Identification of Mild Cognitive Impairment in ACTIVE: Algorithmic Classification and Stability

  • Sarah E. Cook (a1) (a2), Michael Marsiske (a2), Kelsey R. Thomas (a2), Frederick W. Unverzagt (a3), Virginia G. Wadley (a4), Jessica B.S. Langbaum (a5) and Michael Crowe (a4)...

Abstract

Rates of mild cognitive impairment (MCI) have varied substantially, depending on the criteria used and the samples surveyed. The present investigation used a psychometric algorithm for identifying MCI and its stability to determine if low cognitive functioning was related to poorer longitudinal outcomes. The Advanced Cognitive Training of Independent and Vital Elders (ACTIVE) study is a multi-site longitudinal investigation of long-term effects of cognitive training with older adults. ACTIVE exclusion criteria eliminated participants at highest risk for dementia (i.e., Mini-Mental State Examination < 23). Using composite normative for sample- and training-corrected psychometric data, 8.07% of the sample had amnestic impairment, while 25.09% had a non-amnestic impairment at baseline. Poorer baseline functional scores were observed in those with impairment at the first visit, including a higher rate of attrition, depressive symptoms, and self-reported physical functioning. Participants were then classified based upon the stability of their classification. Those who were stably impaired over the 5-year interval had the worst functional outcomes (e.g., Instrumental Activities of Daily Living performance), and inconsistency in classification over time also appeared to be associated increased risk. These findings suggest that there is prognostic value in assessing and tracking cognition to assist in identifying the critical baseline features associated with poorer outcomes. (JINS, 2012, 18, 1–15)

Copyright

Corresponding author

Correspondence and reprint requests to: Michael Marsiske, Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, 32610-0165. E-mail: marsiske@ufl.edu

References

Hide All
American Psychiatric Association. (1994) Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: American Psychiatric Association Press.
Artero, S., Ancelin, M.-L., Portet, F., Dupuy, A., Berr, C., Dartigues, J.-F., Ritchie, K. (2008). Risk profiles for mild cognitive impairment and progression to dementia are gender specific. Journal of Neurology, Neurosurgery, & Psychiatry, 79(9), 979984. doi:10.1136/jnnp.2007.136903
Ball, K., Berch, D.B., Helmers, K.F., Jobe, J.B., Leveck, M.D., Marsiske, M., Willis, S.L. (2002). Effects of cognitive training interventions with older adults. Journal of the American Medical Association, 288, 22712281.
Ball, K., Owsley, C. (1993). The Useful Field of View test: A new technique for evaluating age-related declines in visual functioning. Journal of the American Optometric Association, 64, 7179.
Bickel, H., Mösch, E., Seigerschmidt, E., Siemen, M., Förstl, H. (2006). Prevalence and persistence of mild cognitive impairment among elderly patients in general hospitals. Dementia and Geriatric Cognitive Disorders, 2, 242250.
Blazer, D.G., Hays, J.C., Fillenbaum, G.G., Gold, D.T. (1997). Memory complaint as a predictor of cognitive decline. Journal of Aging and Health, 9, 171184.
Brandt, J. (1991). The Hopkins Verbal Learning Test: Development of a new memory test with six equivalent forms. The Clinical Neuropsychologist, 5, 125142.
Brooks, B.L., Iverson, G.L., Holdnack, J.A., Feldman, H.H. (2008). Potential for misclassification of mild cognitive impairment: A study of memory scores on the Wechsler Memory Scale-III in healthy older adults. Journal of the International Neuropsychological Society, 14(3), 463478.
Brooks, B.L., Iverson, G.L., White, T. (2007). Substantial risk of “accidential MCI” in healthy older adults: Base rates of low memory scores in neuropsychological assessment. Journal of the International Neuropsychological Society, 13, 490500.
Busse, A., Bischkopf, J., Riedel-Heller, S.G., Angermeyer, M.C. (2003). Mild cognitive impairment: Prevalence and incidence according to different diagnostic criteria: Results of the Leipzig Longitudinal Study of the Aged. British Journal of Psychiatry, 182, 449454.
Caracciolo, B., Gatz, M., Xu, W., Pedersen, N.L., Fratiglioni, L. (2012). Differential distribution of subjective and objective cognitive impairment in the population: A nation-wide twin-study. Journal of Alzheimer's Disease, 29(2), 393403.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.
Cook, S.E., Marsiske, M. (2006). Subjective memory beliefs and cognitive performance in normal and mildly impaired older adults. Aging and Mental Health, 10, 413423.
Cooney, T.M., Schaie, K.W., Willis, S.L. (1988). The relationship between prior functioning on cognitive and personality dimensions and subject attrition in longitudinal research. Journal of Gerontology, 43, 1217.
Crowe, M., Andel, R., Wadley, V., Cook, S., Unverzagt, F., Marsiske, M., Ball, K. (2006). Subjective cognitive function and decline among older adults with psychometrically defined amnestic MCI. International Journal of Geriatric Psychiatry, 21, 11871192.
DeJager, C., Blackwell, A.D., Budge, M.M., Sahakian, B.J. (2005). Predicting cognitive decline in healthy older adults. American Journal of Geriatric Psychiatry, 13, 735740.
Ebly, E.M., Hogan, D.B., Parhad, I.M. (1995). Cognitive impairment in the nondemented elderly: Results from the Canadian Study of Health and Aging. Archives of Neurology, 52, 612619.
Ekstrom, R.B., French, J.W., Harman, H., Derman, D. (1976). Kit of factor referenced cognitive tests- revised edition. Princeton, NJ: Educational Testing Services.
Feldman, H.H., Jacova, C. (2005). Mild cognitive impairment. American Journal of Geriatric Psychiatry, 13, 645655.
Fisk, J.D., Merry, H.R., Rockwood, K. (2003). Variations in case definition affect prevalence but not outcome of mild cognitive impairment. Neurology, 61, 11791184.
Folstein, M.F., Folstein, S.E., McHugh, P.R. (1975). Mini-mental state: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198.
Ganguli, M., Chang, C.C., Snitz, B.E., Saxton, J.A., Vanderbilt, J., Lee, C.W. (2010). Prevalence of mild cognitive impairment by multiple classifications: The Monongahela-Youghiogheny Healthy Aging Team (MYHAT) project. American Journal of Geriatric Psychiatry, 18, 674683.
Ganguli, M., Dodge, H.H., Shen, C., DeKosky, S.T. (2004). Mild cognitive impairment amnestic type: An epidemiologic study. Neurology, 63, 115121.
Gonda, J., Schaie, K.W. (1985). Schaie-Thurstone Mental Abilities Test: Word Series Test. Palo Alto, CA: Consulting Psychologists Press.
Goveas, J.S., Espeland, M.A., Woods, N.F., Wassertheil-Smoller, S., Kotchen, J.M. (2011). Depressive symptoms and incidence of mild cognitive impairment and probable dementia in elderly women: The Women's Health Initiative Memory Study. Journal of the American Geriatrics Society, 59, 5766.
Graham, J.E., Rockwood, K., Beattie, B.L. (1997). Prevalence and severity of cognitive impairment with and without dementia in an elderly population. Lancet, 349, 17931796.
Jak, A.J., Bondi, M.W., Delano-Wood, L., Wierenga, C., Corey-Bloom, J., Salmon, D.P., Delis, D.C. (2009). Quantification of five neuropsychological approaches to defining mild cognitive impairment. American Journal of Geriatric Psychiatry, 17, 368375.
Jak, A.J., Bangen, K.J., Wierenga, C.E., Delano-Wood, L., Corey-Bloom, J., Bondi, M.W. (2009). Contributions of neuropsychology and neuroimaging to understanding clinical subtypes of mild cognitive impairment. International Review of Neurobiology, 84, 81103.
Jorm, A.F., Christensen, H., Korten, A.E., Henderson, A.S., Jacomb, P.A., Mackinnon, A. (1997). Do cognitive complaints either predict future cognitive decline or reflect past cognitive decline? A longitudinal study of an elderly community sample. Psychological Medicine, 27, 9198.
Larrieu, S., Letenneur, L., Orgogozo, J.M., Fabrigoule, C., Amieva, H., Le Carret, N., Dartigues, J.F. (2002). Incidence and outcome of mild cognitive impairment in a population-based prospective cohort. Neurology, 59, 15941599.
Manly, J.J., Bell-McGinty, S., Tang, M.X., Schupf, N., Stern, Y., Mayeux, R. (2005). Implementing diagnostic criteria and estimating frequency of mild cognitive impairment in an urban community. Archives of Neurology, 62, 17391746.
Manly, J.J., Tang, M.X., Schupf, N., Stern, Y., Vonsattel, J.G., Mayeux, R. (2008). Frequency and course of mild cognitive impairment in a multiethnic community. Annals of Neurology, 63, 494506.
Marsiske, M., Margrett, J.A. (2006). Everyday problem solving and decision making. In J.E. Birren & K.W. Schaie (Eds.), Handbook of the psychology of aging (pp. 315342). New York: Academic Press.
Morris, J.N., Fries, B.E., Steel, K., Ikegami, N., Bernabei, R., Carpenter, G.I., Topinkova, E. (1997). Comprehensive clinical assessment in community setting: Applicability of the MDS-HC. Journal of the American Geriatrics Society, 45, 10171024.
Palmer, K., Backman, L., Winblad, B., Fratiglioni, L. (2003). Detection of Alzheimer's disease and dementia in the preclinical phase: Population based cohort study. British Medical Journal, 326, 245249.
Panza, F., D'Introno, A., Colaciccio, A.M., Capurso, C., Del Parigi, A., Caselli, R.J., Solfrizzi, V. (2005). Current epidemiology of mild cognitive impairment and other predementia syndromes. American Journal of Geriatric Psychiatry, 13, 633644.
Panza, F., Frisardi, V., Capurso, C., D'Introno, A., Colacicco, A.M., Solfrizzi, V. (2010). Late-life depression, mild cognitive impairment, and dementia: Possible continuum? American Journal of Geriatric Psychiatry, 18, 98116.
Petersen, R.C. (1995). Normal aging, mild cognitive impairment, and early Alzheimer's disease. Neurologist, 1, 326344.
Petersen, R.C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256, 183194.
Petersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Tangalos, E.G., Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56, 303308.
Plassman, B.L., Langa, K.M., Fisher, G.G., Heeringa, S.G., Weir, D.R., Ofstedal, M.B, Wallace, R.B (2008). Prevalence of cognitive impairment without dementia in the United States. Annals of Internal Medicine, 148, 427434.
Radloff, L.S. (1977). The CES-D scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1, 385401.
Rey, A. (1941). L'examen psychologique dans les cas d'encephalopathie tramatique. Archives de Psychologie, 28, 21.
Ritchie, K., Artero, S., Touchon, J. (2001). Classification criteria for mild cognitive impairment: A population-based validation study. Neurology, 56, 3742.
Storandt, M., Grant, E.A., Miller, J.P., Morris, J.C. (2002). Rates of progression in mild cognitive impairment and early Alzheimer's disease. Neurology, 59(7), 10341041.
Tuokko, H.A., McDowell, I. (2006). An overview of mild cognitive impairment. In H.A. Tuokko & D.F. Hultsch, (Eds.), Mild cognitive impairment: International perspectives (pp. 328). New York: Taylor and Francis.
Unverzagt, F.W., Gao, S., Baiyewu, O., Ogunniyi, A.O., Gureje, O., Perkins, A., Hendrie, H.C. (2001). Prevalence of cognitive impairment: Data from the Indianapolis Study of Health and Aging. Neurology, 57, 16551662.
Unverzagt, F.W., Guey, L.T., Jones, R.N., Marsiske, M., King, J., Wadley, V., Tennstedt, S.L. (2012). ACTIVE Cognitive training and rates of incident dementia. Journal of the International Neuropsychological Society, 18, 19.
Unverzagt, F.W., Ogunniyi, A., Taler, V., Gao, S., Lane, K.A., Baiyewu, O., Hall, K.S. (2011). Incidence and risk factors for cognitive impairment no dementia and mild cognitive impairment in African Americans. Alzheimer Disease and Associated Disorders, 25, 410.
U.S. Census Bureau. (2000). Census 2000, Summary File 1; generated by Michael Marsiske; using American FactFinder. Retrieved from http://factfinder.census.gov
Wadley, V.G., Crowe, M., Marsiske, M., Cook, S.E., Unverzagt, F.W., Rosenberg, A.L., Rexroth, D. (2007). Changes in everyday function among individuals with psychometrically defined mild cognitive impairment in the Advanced Cognitive Training for Independent and Vital Elderly Study. Journal of the American Geriatrics Society, 55, 11921198.
Ware, J.E., Sherbourne, C.D. (1992). The MOS 36-Item short-form health survey (SF-36). I. Conceptual framework and item selection. Medical Care, 30, 473483.
Wechsler, D. (1981). Manual for the Wechsler Adult Intelligence Scale—Revised. New York: The Psychological Corporation.
Willis, S.L., Marsiske, M. (1993). Manual for the Everyday Problems Test. University Park, PA: Pennsylvania State University.
Willis, S.L., Tennstedt, S.L., Marsiske, M., Ball, K., Elias, J., Mann Koepke, K., Wright, E. (2006). Long-term effects of cognitive training on everyday functional outcomes in older adults. Journal of the American Medical Association, 296, 28052814.
Wilson, B., Cockburn, J., Baddeley, A. (1985). The Rivermead Behavioural Memory Test. Bury St. Edmunds, England: Thames Valley Test Company.
Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L.O., Petersen, R.C. (2004). Mild cognitive impairment- beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. Journal of Internal Medicine, 256, 240246.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed