Skip to main content Accessibility help

Hepatitis C virus infection is associated with reduced white matter N-acetylaspartate in abstinent methamphetamine users

  • MICHAEL J. TAYLOR (a1) (a2), SCOTT L. LETENDRE (a1), BRIAN C. SCHWEINSBURG (a1) (a2) (a3), OMAR M. ALHASSOON (a1) (a2) (a3), GREGORY G. BROWN (a1) (a2), ASSAWIN GONGVATANA (a1) (a2) (a3), IGOR GRANT (a1) (a2) and THE HNRC (a1)...


Nearly 3,000,000 people in the United States, and over 100,000,000 people worldwide, are infected with hepatitis C virus (HCV), with an increasing trajectory for the foreseeable future (Alter et al., 1999). While hepatic encephalopathy has been long recognized as a disorder associated with cerebral structural, metabolic, and cognitive changes (e.g., Tarter et al., 1989), HCV infection itself is increasingly associated with changes in the brain, even in the absence of hyperammonemia. Specifically, HCV-infected individuals may have deficits in cognitive functions such as attention, working memory, and speed of information processing (Forton et al., 2002; Hilsabeck et al., 2002). They may also have abnormalities on magnetic resonance spectroscopy (MRS), a non-invasive method to measure cerebral metabolites. The most reliably measured compounds using a standard 1.5 Tesla MRI scanner are N-acetylaspartate (NAA), a marker of neuronal integrity; choline and choline-containing compounds (Cho), a measure of cell membrane turnover and lipid changes; myo-Inositol (Ins), a possible indicator of glial proliferation and/or osmolar changes; and creatine+phosphocreatine (Cr), an indicator of high energy stores that is often used as a relative standard for other metabolites. In the first studies of HCV using MRS, Forton et al. (2001; 2002) found elevated Cho/Cr in the frontal white matter and basal ganglia in patients with HCV. In addition patients with two or more impaired neuropsychological test performances had higher Cho/Cr compared to those with less than two impaired test performances.Dr. Erin D. Bigler served as Action Editor during the course of this review.


Corresponding author

Reprint requests to: Michael J. Taylor, Ph.D., VA San Diego Healthcare, Department of Psychiatry (116A), 3350 La Jolla Village Drive, San Diego, CA 92161. E-mail:


Hide All


Alter, M.J., Kruszon-Moran, D., Nainan, O.V., McQuillan, G.M., Gao, F., Moyer, L.A., Kaslow, R.A., & Margolis, H.S. (1999). The prevalence of hepatitis C infection in the United States, 1988 through 1994. New England Journal of Medicine, 341, 556562.
Caussin-Schwemling, C., Schmitt, C., & Stoll-Keller, F. (2001). Study of the infection of human blood derived monocyte/macrophages with hepatitis C virus in vitro. Journal of Medical Virology, 65, 1422.
Davidson, C., Gow, A.J., Lee, T.H., & Ellinwood, E.H. (2001). Methamphetamine neurotoxicity: Necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Research, 36, 122.
Ernst, T., Chang, L., Leonido-Yee, M., & Speck O. (2000). Evidence for long-term neurotoxicity associated with methamphetamine abuse: A 1H MRS study. Neurology, 54, 13441349.
Forton, D.M., Allsop, J.M., Main, J., Foster, G.R., Thomas, H.C., & Taylor-Robinson, S.D. (2001). Evidence for a cerebral effect of the hepatitis C virus. Lancet, 358, 3839.
Forton, D.M., Thomas, H.C., Murphy, C.A., Allsop, J.M., Foster, G.R., Main, J., Wesnes, K.A., & Taylor-Robinson, S.D. (2002). Hepatitis C and cognitive impairment in a cohort of patients with mild liver disease. Hepatology, 35, 433439.
Heaton, R.K., Grant, I., Butters, N., White, D.A., Kirson, D., Atkinson, J.H., McCutchan, J.A., Taylor, M., Kelly, M.D., Ellis, R.J., Wolfson, T., Velin, R., Marcotte, T.D., Hesselink, J.R., Jernigan, T.L., Chandler, J., Wallace, M., Abramson, I., and the HNRC Group. (1995). The HNRC 500—neuropsychology of HIV infection at different disease stages. Journal of the International Neuropsychological Society, 1, 231251.
Hilsabeck, R.C., Perry, W., & Hassanein, T.I. (2002). Neuropsychological impairment in patients with chronic hepatitis C. Hepatology, 35, 440446.
Kramer, L., Bauer, E., Funk, G., Hofer, H., Jessner, W., Steindl-Munda, P., Wrba, F., Madl, C., Gangl, A., & Ferenci, P. (2002). Subclinical impairment of brain function in chronic hepatitis C infection. Journal of Hepatology, 37, 349354.
Provencher, S.W. (1993). Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magnetic Resonance in Medicine, 30, 672679.
Rippeth, J.D., Heaton, R.K., Carey, C.L., Marcotte, T.D., Moore, D.J., Gonzalez, R., Wolfson, T., & Grant, I. (2004). Methamphetamine dependence increases risk of neuropsychological impairment in HIV infected persons. Journal of the International Neuropsychological Society (this issue), 114.
Robbins, L.N. & Regier, D.A. (Eds.). (1991). Psychiatric disorders in America. New York: The Free Press.
Schweinsburg, B.C., Taylor, M.J., Videen, J.S., Alhassoon, O.M., Patterson, T.L., & Grant I. (2000). Elevated myo-inositol in gray matter of recently detoxified but not long-term abstinent alcoholics: A preliminary MR spectroscopy study. Alcoholism Clinical and Experimental Research, 24, 699705.
Tarter, R.E., Edwards, K.L., & Van Thiel, D.H. (1989). Neuropsychological dysfunction due to liver disease. In R.E. Tarter, D.H. Van Thiel, & K.L. Edwards (Eds.), Medical neuropsychology (pp. 7597). New York: Plenum Press.

Hepatitis C virus infection is associated with reduced white matter N-acetylaspartate in abstinent methamphetamine users

  • MICHAEL J. TAYLOR (a1) (a2), SCOTT L. LETENDRE (a1), BRIAN C. SCHWEINSBURG (a1) (a2) (a3), OMAR M. ALHASSOON (a1) (a2) (a3), GREGORY G. BROWN (a1) (a2), ASSAWIN GONGVATANA (a1) (a2) (a3), IGOR GRANT (a1) (a2) and THE HNRC (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed