Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-19T02:09:55.833Z Has data issue: false hasContentIssue false

Exploring Heterogeneity on the Wisconsin Card Sorting Test in Schizophrenia Spectrum Disorders: A Cluster Analytical Investigation

Published online by Cambridge University Press:  20 May 2019

Sean P. Carruthers*
Affiliation:
Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Victoria 3122, Australia
Caroline T. Gurvich
Affiliation:
Monash Alfred Psychiatry Research Centre (MAPrc), Monash University Central Clinical School and The Alfred Hospital, Melbourne 3004, Australia
Denny Meyer
Affiliation:
Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Victoria 3122, Australia Department of Statistics, Data Science and Epidemiology, Swinburne University of Technology, Victoria 3122, Australia
Chad Bousman
Affiliation:
Cooperative Research Centre (CRC) for Mental Health, 161 Barry Street, Carlton, Victoria 3053, Australia Departments of Medical Genetics, Psychiatry, and Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada Department of Psychiatry, The University of Melbourne, Parkville, Victoria 3052, Australia
Ian P. Everall
Affiliation:
Cooperative Research Centre (CRC) for Mental Health, 161 Barry Street, Carlton, Victoria 3053, Australia Department of Psychiatry, The University of Melbourne, Parkville, Victoria 3052, Australia Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK Centre for Neural Engineering, The University of Melbourne, Carlton, VIC, Australia
Erica Neill
Affiliation:
Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Victoria 3122, Australia Department of Psychiatry, The University of Melbourne, Parkville, Victoria 3052, Australia Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
Christos Pantelis
Affiliation:
Cooperative Research Centre (CRC) for Mental Health, 161 Barry Street, Carlton, Victoria 3053, Australia Department of Psychiatry, The University of Melbourne, Parkville, Victoria 3052, Australia Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia Centre for Neural Engineering, The University of Melbourne, Carlton, VIC, Australia Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria 3053, Australia
Philip J. Sumner
Affiliation:
Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Victoria 3122, Australia
Eric J. Tan
Affiliation:
Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Victoria 3122, Australia Department of Mental Health, St Vincent’s Hospital, Melbourne, Victoria 3065, Australia
Elizabeth H.X. Thomas
Affiliation:
Monash Alfred Psychiatry Research Centre (MAPrc), Monash University Central Clinical School and The Alfred Hospital, Melbourne 3004, Australia
Tamsyn E. Van Rheenen
Affiliation:
Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Victoria 3122, Australia Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria 3053, Australia
Susan L. Rossell
Affiliation:
Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Victoria 3122, Australia Department of Mental Health, St Vincent’s Hospital, Melbourne, Victoria 3065, Australia
Australian Schizophrenia Research Bank
Affiliation:
Schizophrenia Research Institute, 405 Liverpool Street, Darlinghurst, Sydney, NSW 2010, Australia
*
Correspondence and reprint requests to: Sean P. Carruthers, Centre for Mental Health, Level 10, ATC Building, Swinburne University of Technology, Hawthorn VIC 3122, Australia. E-mail: scarruthers@swin.edu.au

Abstract

Objectives: The Wisconsin Card Sorting Test (WCST) is a complex measure of executive function that is frequently employed to investigate the schizophrenia spectrum. The successful completion of the task requires the interaction of multiple intact executive processes, including attention, inhibition, cognitive flexibility, and concept formation. Considerable cognitive heterogeneity exists among the schizophrenia spectrum population, with substantive evidence to support the existence of distinct cognitive phenotypes. The within-group performance heterogeneity of individuals with schizophrenia spectrum disorder (SSD) on the WCST has yet to be investigated. A data-driven cluster analysis was performed to characterise WCST performance heterogeneity. Methods: Hierarchical cluster analysis with k-means optimisation was employed to identify homogenous subgroups in a sample of 210 schizophrenia spectrum participants. Emergent clusters were then compared to each other and a group of 194 healthy controls (HC) on WCST performance and demographic/clinical variables. Results: Three clusters emerged and were validated via altered design iterations. Clusters were deemed to reflect a relatively intact patient subgroup, a moderately impaired patient subgroup, and a severely impaired patient subgroup. Conclusions: Considerable within-group heterogeneity exists on the WCST. Identification of subgroups of patients who exhibit homogenous performance on measures of executive functioning may assist in optimising cognitive interventions. Previous associations found using the WCST among schizophrenia spectrum participants should be reappraised. (JINS, 2019, 25, 750–760)

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2019. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allott, K.A., Killackey, E., Sun, P., Brewer, W.J., & Velligan, D.I. (2017). Improving vocational outcomes in first-episode psychosis by addressing cognitive impairments using cognitive adaptation training. Work, 56(4), 581589. doi: 10.3233/WOR-172517CrossRefGoogle ScholarPubMed
Bellack, A.S., Blanchard, J.J., Murphy, P., & Podell, K. (1996). Generalization effects of training on the Wisconsin Card Sorting Test for schizophrenia patients. Schizophrenia Research, 19(2–3), 189194. doi: 10.1016/0920-9964(95)00067-4CrossRefGoogle ScholarPubMed
Blair, J.R. & Spreen, O. (1989). Predicting premorbid IQ: A revision of the National Adult Reading Test. The Clinical Neuropsychologist, 3(2), 129136.CrossRefGoogle Scholar
Bora, E. (2016). Differences in cognitive impairment between schizophrenia and bipolar disorder: Considering the role of heterogeneity. Psychiatry and Clinical Neurosciences, 70(10), 424433. doi: 10.1111/pcn.12410CrossRefGoogle ScholarPubMed
Bowie, C.R., McGurk, S.R., Mausbach, B., Patterson, T.L., & Harvey, P.D. (2012). Combined cognitive remediation and functional skills training for schizophrenia: Effects on cognition, functional competence, and real-world behavior. American Journal of Psychiatry, 169(7), 710718. doi: 10.1176/appi.ajp.2012.11091337CrossRefGoogle ScholarPubMed
Bryce, S.D., Rossell, S.L., Lee, S.J., Lawrence, R.J., Tan, E.J., Carruthers, S.P., & Ponsford, J.L. (2018). Neurocognitive and self-efficacy benefits of cognitive remediation in schizophrenia: A randomized controlled trial. Journal of the International Neuropsychological Society, 23, 114.Google Scholar
Bryson, G., Greig, T., Lysaker, P., & Bell, M. (2002). Longitudinal Wisconsin Card Sorting performance in schizophrenia patients in rehabilitation. Applied Neuropsychology, 9(4), 203209. doi: 10.1207/S15324826AN0904_2CrossRefGoogle ScholarPubMed
Burdick, K.E., Russo, M., Frangou, S., Mahon, K., Braga, R.J., Shanahan, M., & Malhotra, A.K. (2014). Empirical evidence for discrete neurocognitive subgroups in bipolar disorder: Clinical implications. Psychological Medicine, 44(14), 30833096. doi: 10.1017/S0033291714000439CrossRefGoogle ScholarPubMed
Cella, M., Bishara, A.J., Medin, E., Swan, S., Reeder, C., & Wykes, T. (2014). Identifying cognitive remediation change through computational modelling – Effects on reinforcement learning in schizophrenia. Schizophrenia Bulletin, 40(6), 14221432. doi: 10.1093/schbul/sbt152CrossRefGoogle Scholar
Choi, J. & Kurtz, M.M. (2009). A comparison of remediation techniques on the Wisconsin Card Sorting Test in schizophrenia. Schizophrenia Research, 107(1), 7682. doi: 10.1016/j.schres.2008.09.017CrossRefGoogle Scholar
Cobia, D.J., Csernansky, J.G., & Wang, L. (2011). Cortical thickness in neuropsychologically near-normal schizophrenia. Schizophrenia Research, 133(1–3), 6876. doi: 10.1016/j.schres.2011.08.017CrossRefGoogle ScholarPubMed
Croca, M., Lagodka, A., Gadel, R., Bourdel, M.C., Bendjemaa, N., Gaillard, R., Olie, J.P., Champagne-Lavau, M., Krebs, M.O., & Amado, I. (2018). Theory of mind and schizophrenia in young and middle-aged patients: Influence of executive functions. Psychiatry Research, 259, 532537. doi: 10.1016/j.psychres.2017.10.041CrossRefGoogle Scholar
Czepielewski, L.S., Wang, L., Gama, C.S., & Barch, D.M. (2017). The relationship of intellectual functioning and cognitive performance to brain structure in schizophrenia. Schizophrenia Bulletin, 43(2), 355364. doi: 10.1093/schbul/sbw090Google Scholar
Dawes, S.E., Jeste, D.V., & Palmer, B.W. (2011). Cognitive profiles in persons with chronic schizophrenia. Journal of Clinical and Experimental Neuropsychology, 33(8), 929936. doi: 10.1080/13803395.2011.578569CrossRefGoogle ScholarPubMed
Donohoe, G. & Robertson, I.H. (2003). Can specific deficits in executive functioning explain the negative symptoms of schizophrenia? A review. Neurocase, 9(2), 97108. doi: 10.1076/neur.9.2.97.15075CrossRefGoogle ScholarPubMed
Farreny, A., Aguado, J., Ochoa, S., Huerta-Ramos, E., Marsà, F., López-Carrilero, R., Carral, V., Haro, J.M., & Usall, J. (2012). REPYFLEC cognitive remediation group training in schizophrenia: Looking for an integrative approach. Schizophrenia Research, 142(1), 137144. doi: 10.1016/j.schres.2012.08.035CrossRefGoogle ScholarPubMed
Fredrick, M.M., Mintz, J., Roberts, D.L., Maples, N.J., Sarkar, S., Li, X., & Velligan, D.I. (2015). Is cognitive adaptation training (CAT) compensatory, restorative, or both? Schizophrenia Research, 166(1–3), 290296. doi: 10.1016/j.schres.2015.06.003CrossRefGoogle ScholarPubMed
Geisler, D., Walton, E., Naylor, M., Roessner, V., Lim, K.O., Schulz, S.C., Gollub, R.L., Calhoun, V.D., Sponheim, S.R., & Ehrlich, S. (2015). Brain structure and function correlates of cognitive subtypes in schizophrenia. Psychiatry Research-Neuroimaging, 234(1), 7483. doi: 10.1016/j.pscychresns.2015.08.008CrossRefGoogle Scholar
Gilbert, E., Mérette, C., Jomphe, V., Émond, C., Rouleau, N., Bouchard, R.H., Roy, W.A., Paccalet, T., & Maziade, M. (2014). Cluster analysis of cognitive deficits may mark heterogeneity in schizophrenia in terms of outcome and response to treatment. European Archives of Psychiatry and Clinical Neuroscience, 264(4), 333343. doi: 10.1007/s00406-013-0463-7CrossRefGoogle Scholar
Green, M.F., Kern, R.S., Braff, D.L., & Mintz, J. (2000). Neurocognitive deficits and functional outcome in schizophrenia: Are we measuring the ‘right stuff’? Schizophrenia Bulletin, 26(1), 119136.CrossRefGoogle Scholar
Green, M.F., Kern, R.S., & Heaton, R.K. (2004). Longitudinal studies of cognition and functional outcome in schizophrenia: Implications for MATRICS. Schizophrenia Research, 72(1), 4151.CrossRefGoogle ScholarPubMed
Heaton, R.K. (1993). Wisconsin Card Sorting Test Manual, Revised and Expanded. Psychological Assessment Services, Inc.Google Scholar
Hergueta, T., Baker, R., & Dunbar, G.C. (1998). The Mini-International Neuropsychiatric Interview (MINI): the development and validation of a structured diagnostic psychiatric interview for DSM-IVand ICD-10. J clin Psychiatry, 59(Suppl 20), 2233.Google Scholar
Hill, S.K., Ragland, J.D., Gur, R.C., & Gur, R.E. (2002). Neuropsychological profiles delineate distinct profiles of schizophrenia, an interaction between memory and executive function, and uneven distribution of clinical subtypes. Journal of Clinical and Experimental Neuropsychology, 24(6), 765780. doi: 10.1076/jcen.24.6.765.8402CrossRefGoogle ScholarPubMed
Hoti, F., Tuulio-Henriksson, A., Haukka, J., Partonen, T., Holmström, L., & Lönnqvist, J. (2004). Family-based clusters of cognitive test performance in familial schizophrenia. BMC Psychiatry, 4. doi: 10.1186/1471-244X-4-20CrossRefGoogle ScholarPubMed
Joyce, E.M., & Roiser, J.P. (2007). Cognitive heterogeneity in schizophrenia. Current Opinion in Psychiatry, 20(3), 268272. doi: 10.1097/YCO.0b013e3280ba4975CrossRefGoogle Scholar
Jurado, M.B., & Rosselli, M. (2007). The elusive nature of executive functions: A review of our current understanding. Neuropsychology Review, 17(3), 213233. doi: 10.1007/s11065-007-9040-zCrossRefGoogle ScholarPubMed
Kay, S.R., Fiszbein, A., & Opler, L.A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261276.CrossRefGoogle Scholar
Kim, H.S., An, Y.M., Kwon, J.S., & Shin, M.S. (2014). A preliminary validity study of the Cambridge neuropsychological test automated battery for the assessment of executive function in schizophrenia and bipolar disorder. Psychiatry Investigation, 11(4), 394401. doi: 10.4306/pi.2014.11.4.394CrossRefGoogle ScholarPubMed
Kurtz, M.M., Moberg, P.J., Gur, R.C., & Gur, R.E. (2001). Approaches to cognitive remediation of neuropsychological deficits in schizophrenia: A review and meta-analysis. Neuropsychology Review, 11(4), 197210. doi: 10.1023/A:1012953108158CrossRefGoogle ScholarPubMed
Landis, J.R., & Koch, G.G. (1977). The measurement of observer agreement for categorical data. Biometrics, 159174.CrossRefGoogle ScholarPubMed
Leucht, S., Kane, J.M., Etschel, E., Kissling, W., Hamann, J., & Engel, R.R. (2006). Linking the PANSS, BPRS, and CGI: Clinical implications. Neuropsychopharmacology, 31(10), 23182325. doi: 10.1038/sj.npp.1301147CrossRefGoogle ScholarPubMed
Leucht, S., Rothe, P., Davis, J.M., & Engel, R.R. (2013). Equipercentile linking of the BPRS and the PANSS. European Neuropsychopharmacology, 23(8), 956959. doi: 10.1016/j.euroneuro.2012.11.004CrossRefGoogle ScholarPubMed
Lewandowski, K.E., Baker, J.T., McCarthy, J.M., Norris, L.A., & Öngür, D. (2018). Reproducibility of cognitive profiles in psychosis using cluster analysis. Journal of the International Neuropsychological Society, 24(4), 382390. doi: 10.1017/S1355617717001047CrossRefGoogle ScholarPubMed
Lewandowski, K.E., Sperry, S.H., Cohen, B.M., & Öngür, D. (2014). Cognitive variability in psychotic disorders: A cross-diagnostic cluster analysis. Psychological Medicine, 44(15), 32393248. doi: 10.1017/S0033291714000774CrossRefGoogle ScholarPubMed
Li, C.S.R. (2004). Do schizophrenia patients make more perseverative than non-perseverative errors on the Wisconsin Card Sorting Test? A meta-analytic study. Psychiatry Research, 129(2), 179190. doi: 10.1016/j.psychres.2004.06.016CrossRefGoogle ScholarPubMed
Light, G.A., Swerdlow, N.R., Rissling, A.J., Radant, A., Sugar, C.A., Sprock, J., Pela, M., Geyer, M.A., & Braff, D.L. (2012). Characterization of neurophysiologic and neurocognitive biomarkers for use in genomic and clinical outcome studies of schizophrenia. PLoS ONE, 7(7), e39434.CrossRefGoogle ScholarPubMed
Liu, C.M., Fann, C.S., Chen, C.Y., Liu, Y.L., Oyang, Y.J., Yang, W.C., Chang, C.C., Wen, C.C., Chen, W.J., Hwang, T.J., Hsieh, M.H., Liu, C.C., Faraone, S.V., Tsuang, M.T., & Hwu, H.G. (2011). ANXA7, PPP3CB, DNAJC9, and ZMYND17 genes at chromosome 10q22 associated with the subgroup of schizophrenia with deficits in attention and executive function. Biological Psychiatry, 70(1), 5158. doi: 10.1016/j.biopsych.2011.02.033CrossRefGoogle ScholarPubMed
Lysaker, P., Bell, M., & Beam-Goulet, J. (1995). Wisconsin card sorting test and work performance in schizophrenia. Psychiatry Research, 56(1), 4551. doi: 10.1016/0165-1781(94)02641-UCrossRefGoogle Scholar
McDermid Vaz, S. & Heinrichs, R.W. (2006). Stability and validity of memory-based subtypes of schizophrenia. Journal of the International Neuropsychological Society, 12(6), 782791. doi: 10.1017/S1355617706060966Google Scholar
Miyake, A., & Friedman, N.P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychological Science, 21(1), 814. doi: 10.1177/0963721411429458CrossRefGoogle ScholarPubMed
Miyake, A., Friedman, N.P., Emerson, M.J., Witzki, A.H., Howerter, A., & Wager, T.D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49100. doi: 10.1006/cogp.1999.0734CrossRefGoogle ScholarPubMed
Nieuwenstein, M.R., Aleman, A., & De Haan, E.H.F. (2001). Relationship between symptom dimensions and neurocognitive functioning in schizophrenia: A meta-analysis of WCST and CPT studies. Journal of Psychiatric Research, 35(2), 119125. doi: 10.1016/S0022-3956(01)00014-0CrossRefGoogle ScholarPubMed
Overall, J.E., & Gorham, D.R. (1962). The brief psychiatric rating scale. Psychological Reports, 10(3), 799812.CrossRefGoogle Scholar
Penadés, R., Catalán, R., Puig, O., Masana, G., Pujol, N., Navarro, V., Guarch, J., & Gastó, C. (2010). Executive function needs to be targeted to improve social functioning with Cognitive Remediation Therapy (CRT) in schizophrenia. Psychiatry Research, 177(1–2), 4145. doi: 10.1016/j.psychres.2009.01.032CrossRefGoogle Scholar
Polgár, P., Réthelyi, J.M., Bálint, S., Komlósi, S., Czobor, P., & Bitter, I. (2010). Executive function in deficit schizophrenia: What do the dimensions of the Wisconsin Card Sorting Test tell us? Schizophrenia Research, 122(1–3), 8593. doi: 10.1016/j.schres.2010.06.007CrossRefGoogle ScholarPubMed
Potter, A.I., & Nestor, P.G. (2010). IQ subtypes in schizophrenia: Distinct symptom and neuropsychological profiles. Journal of Nervous and Mental Disease, 198(8), 580585. doi: 10.1097/NMD.0b013e3181ea4e43CrossRefGoogle ScholarPubMed
Rady, A., Elsheshai, A., el Wafa, H.A., & Elkholy, O. (2011). Wisconsin Card Sort Test (WCST) performance in schizophrenia and severe depression with psychotic features. German Journal of Psychiatry, 14(2), 9194.Google Scholar
Rempfer, M., Hamera, E., Brown, C., & Bothwell, R.J. (2006). Learning proficiency on the Wisconsin Card Sorting Test in people with serious mental illness: What are the cognitive characteristics of good learners? Schizophrenia Research, 87(1–3), 316322. doi: 10.1016/j.schres.2006.05.012CrossRefGoogle ScholarPubMed
Rempfer, M.V., McDowd, J.M., & Brown, C.E. (2017). Measuring learning potential in people with schizophrenia: A comparison of two tasks. Psychiatry Research, 258, 316321. doi: 10.1016/j.psychres.2017.08.057CrossRefGoogle ScholarPubMed
Reser, M.P., Allott, K.A., Killackey, E., Farhall, J., & Cotton, S.M. (2015). Exploring cognitive heterogeneity in first-episode psychosis: What cluster analysis can reveal. Psychiatry Research, 229(3), 819827. doi: 10.1016/j.psychres.2015.07.084CrossRefGoogle ScholarPubMed
Rossell, S.L., Coakes, J., Shapleske, J., Woodruff, P.W.R., & David, A.S. (2003). Insight: Its relationship with cognitive function, brain volume and symptoms in schizophrenia. Psychological Medicine, 33(1), 111119. doi: 10.1017/S0033291702006803CrossRefGoogle Scholar
Rossell, S.L., & David, A.S. (1997). Improving performance on the WCST: Variations on the original procedure. Schizophrenia Research, 28(1), 6376. doi: 10.1016/S0920-9964(97)00093-5CrossRefGoogle ScholarPubMed
Rybakowski, J.K., Borkowska, A., Czerski, P.M., Dmitrzak-Weglarz, M., Skibinska, M., Kapelski, P., & Hauser, J. (2006). Performance on the Wisconsin Card Sorting Test in schizophrenia and genes of dopaminergic inactivation (COMT, DAT, NET). Psychiatry Research, 143(1), 1319. doi: 10.1016/j.psychres.2005.10.008CrossRefGoogle Scholar
Sasabayashi, D., Takayanagi, Y., Nishiyama, S., Takahashi, T., Furuichi, A., Kido, M., Nishikawa, Y., Nakamura, M., Noguchi, K., & Suzuki, M. (2017). Increased frontal gyrification negatively correlates with executive function in patients with first-episode schizophrenia. Cerebral Cortex, 27(4), 26862694. doi: 10.1093/cercor/bhw101Google ScholarPubMed
Sauvé, G., Malla, A., Joober, R., Brodeur, M.B., & Lepage, M. (2018). Comparing cognitive clusters across first- and multiple-episode of psychosis. Psychiatry Research, 269, 707718. doi: 10.1016/j.psychres.2018.08.119CrossRefGoogle Scholar
Scarr, E., Sundram, S., Deljo, A., Cowie, T.F., Gibbons, A.S., Juzva, S., Mackinnon, A., Wood, S.J., Testa, R., Pantelis, C., & Dean, B. (2012). Muscarinic M1 receptor sequence: Preliminary studies on its effects on cognition and expression. Schizophrenia Research, 138(1), 9498. doi: 10.1016/j.schres.2012.02.011CrossRefGoogle ScholarPubMed
Seaton, B.E., Goldstein, G., & Allen, D.N. (2001). Sources of heterogeneity in schizophrenia: The role of neuropsychological functioning. Neuropsychology Review, 11(1), 4567. doi: 10.1023/A:1009013718684CrossRefGoogle ScholarPubMed
Shafer, A. (2005). Meta-analysis of the brief psychiatric rating scale factor structure. Psychological Assessment, 17(3), 324335. doi: 10.1037/1040-3590.17.3.324CrossRefGoogle ScholarPubMed
Uren, J., Cotton, S.M., Killackey, E., Saling, M.M., & Allott, K. (2017). Cognitive clusters in first-episode psychosis: Overlap with healthy controls and relationship to concurrent and prospective symptoms and functioning. Neuropsychology, 31(7), 787797. doi: 10.1037/neu0000367CrossRefGoogle ScholarPubMed
Van der Does, A.J.W., & Van den Bosch, R.J. (1992). What determines Wisconsin Card Sorting performance in schizophrenia? Clinical Psychology Review, 12(6), 567583. doi: 10.1016/0272-7358(92)90132-RCrossRefGoogle Scholar
Van Rheenen, T.E., Cropley, V., Zalesky, A., Bousman, C., Wells, R., Bruggemann, J., Sundram, S., Weinberg, D., Lenroot, R.K., Pereira, A., Weickert, C.S., Weickert, T.W., & Pantelis, C. (2018). Widespread volumetric reductions in Schizophrenia and Schizoaffective patients displaying compromised cognitive abilities. Schizophrenia Bulletin, 44(3), 560574. doi: 10.1093/schbul/sbx109CrossRefGoogle ScholarPubMed
Van Rheenen, T.E., Lewandowski, K.E., Tan, E.J., Ospina, L.H., Ongur, D., Neill, E., Gurvich, C., Pantelis, C., Malhotra, A.K., Rossell, S.L., & Burdick, K. E. (2017). Characterizing cognitive heterogeneity on the schizophrenia-bipolar disorder spectrum. Psychological Medicine, 47(10), 18481864. doi: 10.1017/S0033291717000307CrossRefGoogle ScholarPubMed
Velligan, D.I., Bow-Thomas, C.C., Mahurin, R.K., Miller, A.L., & Halgunseth, L.C. (2000). Do specific neurocognitive deficits predict specific domains of community function in schizophrenia? Journal of Nervous and Mental Disease, 188(8), 518524. doi: 10.1097/00005053-200008000-00007CrossRefGoogle Scholar
Waford, R.N., & Lewine, R. (2010). Is perseveration uniquely characteristic of schizophrenia? Schizophrenia Research, 118(1–3), 128133. doi: 10.1016/j.schres.2010.01.031CrossRefGoogle ScholarPubMed
Wechsler, D. (2001). Wechsler Test of Adult Reading: WTAR. San Antonio TX: Psychological Corporation.Google Scholar
Weickert, T.W., Goldberg, T.E., Gold, J.M., Bigelow, L.B., Egan, M.F., & Weinberger, D.R. (2000). Cognitive impairments in patients with schizophrenia displaying preserved and compromised intellect. Archives of General Psychiatry, 57(9), 907913. doi: 10.1001/archpsyc.57.9.907CrossRefGoogle ScholarPubMed
Weinberg, D., Lenroot, R., Jacomb, I., Allen, K., Bruggemann, J., Wells, R., Balzan, R., Liu, D., Galletly, C., Catts, S.V., Weickert, C.S., & Weickert, T.W. (2016). Cognitive subtypes of schizophrenia characterized by differential brain volumetric reductions and cognitive decline. JAMA Psychiatry, 73(12), 12511259. doi: 10.1001/jamapsychiatry.2016.2925CrossRefGoogle ScholarPubMed
Wells, R., Swaminathan, V., Sundram, S., Weinberg, D., Bruggemann, J., Jacomb, I., Cropley, V., Lenroot, R., Pereira, A.M., & Zalesky, A. (2015). The impact of premorbid and current intellect in schizophrenia: Cognitive, symptom, and functional outcomes. npj Schizophrenia, 1, 15043.CrossRefGoogle ScholarPubMed
Wilmsmeier, A., Ohrmann, P., Suslow, T., Siegmund, A., Koelkebeck, K., Rothermundt, M., Kugel, H., Arolt, V., Vauer, J., & Pedersen, A. (2010). Neural correlates of set-shifting: Decomposing executive functions in schizophrenia. Journal of Psychiatry and Neuroscience, 35(5), 321329. doi: 10.1503/jpn.090181CrossRefGoogle Scholar
Woodward, N.D., & Heckers, S. (2015). Brain structure in neuropsychologically defined subgroups of schizophrenia and psychotic bipolar disorder. Schizophrenia Bulletin, 41(6), 13491359. doi: 10.1093/schbul/sbv048CrossRefGoogle ScholarPubMed
Wykes, T., Reeder, C., Landau, S., Everitt, B., Knapp, M., Patel, A., & Romeo, R. (2007). Cognitive remediation therapy in schizophrenia: Randomised controlled trial. British Journal of Psychiatry, 190(May), 421427. doi: 10.1192/bjp.bp.106.026575CrossRefGoogle ScholarPubMed
Supplementary material: File

Carruthers et al. supplementary material

Tables S1-S4 and Figures S1-S2

Download Carruthers et al. supplementary material(File)
File 6.9 MB