Skip to main content Accessibility help

Examining predictors of reaction times in children with ADHD and normal controls



A microanalysis of task events in a common go/no-go task was completed to examine how task events impact individual reaction times. Predictors of long reaction times were analyzed to better understand increased intra-individual variability (IIV) among children with ADHD compared with normal controls. Sixty-five children with ADHD and 65 normal controls matched on gender, ethnicity, and age completed a go/no-go task. Children across both groups were slower before and after omission errors than all other trials. They were also slower on the trial before successfully inhibiting their response to no-go trials. Children with ADHD exhibited a pronounced slowing on trials prior to omission errors and trials prior to successful inhibitions compared with the normal control group. Pre-error slowing in children with ADHD may represent the beginning stages of attentional disengagement that subsequently results in the absence of responding (i.e., errors of omission or successful inhibition). While these event-related increases in reaction time explain some of the increased IIV observed in children with ADHD, the removal of these trials did not remove the pronounced between-group differences in IIV, suggesting that additional unmeasured processes are contributing to IIV in children with ADHD. (JINS, 2010, 16, 138–147.)


Corresponding author

*Correspondence and reprint requests to: Jeffery N. Epstein, Cincinnati Children’s Hospital Medical Center, Division of Behavioral Medicine and Clinical Psychology, 3333 Burnet Avenue, MLC 10006, Cincinnati, Ohio 45229-3039. E-mail:


Hide All
American Psychiatric Association. (2000). Diagnostic and Statistical Manual of Mental Disorders (IV-Text Revision). Washington, DC: American Psychiatric Association.
Andreou, P., Neale, B.M., Chen, W., Christiansen, H., Gabriels, I., Heise, A., et al. . (2007). Reaction time performance in ADHD: Improvement under fast-incentive condition and familial effects. Psychological Medicine, 113.
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological), 57, 289300.
Castellanos, F.X., Sonuga-Barke, E.J., Scheres, A., Di Martino, A., Hyde, C., Walters, J.R., et al. . (2005). Varieties of attention-deficit/hyperactivity disorder-related intra-individual variability. Biological Psychiatry, 57, 14161423.
Cheyne, J.A., Solman, G.J., Carriere, J.S., & Smilek, D. (2009). Anatomy of an error: A bidirectional state model of task engagement/disengagement and attention-related errors. Cognition, 111, 98113.
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). New York: Academic Press.
Conners, C.K. (1994). The Conners Continuous Performance Test. Toronto, Canada: Multi-Health Systems, Inc.
Corkum, P.V., & Siegel, L.S. (1993). Is the continuous performance task a valuable research tool for use with children with attention-deficit-hyperactivity disorder? Journal of Child Psychology and Psychiatry, 34, 12171239.
Durston, S., Tottenham, N.T., Thomas, K.M., Davidson, M.C., Eigsti, I.M., Yang, Y., et al. . (2003). Differential patterns of striatal activation in young children with and without ADHD. Biological Psychiatry, 53, 871878.
Epstein, J.N., Conners, C.K., Hervey, A.S., Tonev, S.T., Arnold, L.E., Abikoff, H.B., et al. . (2006). Assessing medication effects in the MTA study using neuropsychological outcomes. Journal of Child Psychology and Psychiatry, 47, 446456.
Epstein, J.N., Erkanli, A., Conners, C.K., Klaric, J., Costello, J.E., & Angold, A. (2003). Relations between continuous performance test performance measures and ADHD behaviors. Journal of Abnormal Child Psychology, 31, 543554.
Gehring, W.J., Goss, B., Coles, M.G.H., Meyer, D.E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4, 385390.
Gilden, D.L., & Hancock, H. (2007). Response variability in attention deficit disorders. Psychological Science, 18, 796802.
Hervey, A.S., Epstein, J.N., & Curry, J.F. (2004). The neuropsychology of adults with attention deficit hyperactivity disorder: A meta-analytic review. Neuropsychology, 18, 485503.
Hervey, A.S., Epstein, J.N., Curry, J.F., Tonev, S., Arnold, L.E., Conners, C.K., et al. . (2006). Reaction time distribution analysis of neuropsychological performance in an ADHD sample. Child Neuropsychology, 12, 125140.
Hurtig, T., Ebeling, H., Taanila, A., Miettunen, J., Smalley, S.L., McGough, J.J., et al. . (2007). ADHD symptoms and subtypes: Relationship between childhood and adolescent symptoms. Journal of the American Academy of Child and Adolescent Psychiatry, 46, 16051613.
Klein, C., Wendling, K., Huettner, P., Ruder, H., Peper, M., Klein, C., et al. . (2006). Intra-subject variability in attention-deficit hyperactivity disorder. Biological Psychiatry, 60, 10881097.
Krusch, D.A., Klorman, R., Brumaghim, J.T., Fitzpatrick, P.A., Borgstedt, A.D., & Strauss, J. (1996). Methylphenidate slows reactions of children with attention deficit disorder during and after an error. Journal of Abnormal Child Psychology, 24, 633650.
Leth-Steensen, C., Elbaz, Z.K., & Douglas, V.I. (2000). Mean response times, variability, and skew in the responding of ADHD children: A response time distributional approach. Acta Psychologica, 104, 167190.
Luce, R.D. (1986). Response Times: Their Role in Inferring Elementary Mental Organization. New York: Oxford University Press.
Manly, T., Robertson, I.H., Galloway, M., & Hawkins, K. (1999). The absent mind: Further investigations of sustained attention to response. Neuropsychologia, 37, 661670.
MTA Cooperative Group. (2004). National Institute of Mental Health Multimodal Treatment Study of ADHD follow-up: 24-month outcomes of treatment strategies for attention-deficit/hyperactivity disorder. Pediatrics, 113, 754761.
Oosterlaan, J., Logan, G.D., & Sergeant, J.A. (1998). Response inhibition in AD/HD, CD, comorbid AD/HD + CD, anxious, and control children: A meta-analysis of studies with the stop task. Journal of Child Psychology and Psychiatry and Allied Disciplines, 39, 411425.
Rabbitt, P.M.A. (1966). Errors and error correction in choice reaction tasks. Journal of Experimental Psychology, 71, 264272.
Rabbitt, P.M.A. (1968). Repetition effects and signal classification strategies in serial choice-response tasks. Quarterly Journal of Experimental Psychology A, 20, 232240.
Rieger, M., & Gauggel, S. (1999). Inhibitory after-effects in the stop signal paradigm. British Journal of Psychology, 90, 509518.
Russell, V.A., Oades, R.D., Tannock, R., Killeen, P.R., Auerbach, J.G., Johansen, E.B., et al. . (2006). Response variability in attention-deficit/hyperactivity disorder: A neuronal and glial energetics hypothesis. Behavioral and Brain Functions, 2, 30.
Schachar, R.J., Chen, S., Logan, G.D., Ornstein, T.J., Crosbie, J., Ickowicz, A., et al. . (2004). Evidence for an error monitoring deficit in attention deficit hyperactivity disorder. Journal of Abnormal Child Psychology, 32, 285293.
Schachar, R., Tannock, R., Marriott, M., & Logan, G. (1995). Deficient inhibitory control in attention deficit hyperactivity disorder. Journal of Abnormal Child Psychology, 23, 411437.
Sergeant, J.A., & van der Meere, J. (1988). What happens after a hyperactive child commits an error? Psychiatry Research, 24, 157164.
Shaffer, D., Fisher, P., Lucas, C.P., Dulcan, M.K., & Schwab-Stone, M.E. (2000). NIMH Diagnostic Interview Schedule for Children Version IV (NIMH DISC-IV): Description, differences from previous versions, and reliability of some common diagnoses. Journal of the American Academy of Child and Adolescent Psychiatry, 39, 2838.
Smallwood, J.M., Baracaia, S.F., Lowe, M., & Obonsawin, M. (2003). Task unrelated thought whilst encoding information. Consciousness and Cognition, 12, 452484.
Smallwood, J.M., Davies, J.B., Heim, D., Finnigan, F., Sudberry, M., O’Connor, R., et al. . (2004). Subjective experience and the attentional lapse: Task engagement and disengagement during sustained attention. Consciousness and Cognition, 13, 657690.
Smallwood, J.M., McSpadden, M., Luus, B., & Schooler, J.W. (2008). Segmenting the stream of consciousness: The psychological correlates of temporal structures in the time series data of a continuous performance test. Brain and Cognition, 66, 5056.
Spencer, S.V., Hawk, L.W. Jr, Richards, J.B., Shiels, K., Pelham, W.E., & Waxmonsky, J.G. (2009). Stimulant treatment reduces lapses in attention among children with ADHD: The effects of methylphenidate on intra-individual response time distributions. Journal of Abnormal Child Psychology, 37, 805816.
Swanson, J.M. (1992). School Based Assessments and Interventions for ADD Students. Irvine, CA: KC Publishing.
Ulrich, R., & Miller, J. (1994). Effects of truncation on reaction time analysis. Journal of Experimental Psychology: General, 123, 3480.
Willcutt, E.G., Doyle, A.E., Nigg, J.T., Faraone, S.V., & Pennington, B.F. (2005). Validity of the executive function theory of attention-deficit/hyperactivity disorder: A meta-analytic review. Biological Psychiatry, 57, 13361346.


Related content

Powered by UNSILO

Examining predictors of reaction times in children with ADHD and normal controls



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.