Skip to main content Accessibility help

Entorhinal cortex volume in older adults: Reliability and validity considerations for three published measurement protocols

  • C.C. PRICE (a1) (a2) (a3), M.F. WOOD (a4), C.M. LEONARD (a2) (a5), S. TOWLER (a1), J. WARD (a1), H. MONTIJO (a6), I. KELLISON (a1), D. BOWERS (a1) (a2), T. MONK (a7), J.C. NEWCOMER (a8) and I. SCHMALFUSS (a9) (a10)...


Measuring the entorhinal cortex (ERC) is challenging due to lateral border discrimination from the perirhinal cortex. From a sample of 39 nondemented older adults who completed volumetric image scans and verbal memory indices, we examined reliability and validity concerns for three ERC protocols with different lateral boundary guidelines (i.e., Goncharova, Dickerson, Stoub, & deToledo-Morrell, 2001; Honeycutt et al., 1998; Insausti et al., 1998). We used three novice raters to assess inter-rater reliability on a subset of scans (216 total ERCs), with the entire dataset measured by one rater with strong intra-rater reliability on each technique (234 total ERCs). We found moderate to strong inter-rater reliability for two techniques with consistent ERC lateral boundary endpoints (Goncharova, Honeycutt), with negligible to moderate reliability for the technique requiring consideration of collateral sulcal depth (Insausti). Left ERC and story memory associations were moderate and positive for two techniques designed to exclude the perirhinal cortex (Insausti, Goncharova), with the Insausti technique continuing to explain 10% of memory score variance after additionally controlling for depression symptom severity. Right ERC-story memory associations were nonexistent after excluding an outlier. Researchers are encouraged to consider challenges of rater training for ERC techniques and how lateral boundary endpoints may impact structure-function associations. (JINS, 2010, 16, 846–855.)


Corresponding author

*Correspondence and reprint requests to: Catherine C. Price, Ph.D., Clinical and Health Psychology, 101 S. Newell Drive, PO Box 100165, University of Florida, Gainesville, FL 32610. E-mail:


Hide All
American Psychiatric Association (2000). Diagnostic and statistical manual of mental disorders DSM-IV TR fourth edition (text revision). Washington, DC: American Psychiatric Association Press.
Barta, P.E., Dhingra, L., Royall, R., & Schwartz, E. (1997). Improving stereological estimates for the volume of structures identified in three-dimensional arrays of spatial data. Journal of Neuroscience Methods, 75, 111118.
Bellgowan, P.S., Buffalo, E.A., Bodurka, J., & Martin, A. (2009). Lateralized spatial and object memory encoding in entorhinal and perirhinal cortices. Learning & Memory, 16, 433438.
Braak, H., & Braak, E. (1994). Morphological criteria for the recognition of Alzheimer’s disease and the distribution pattern of cortical changes related to this disorder. Neurobiology of Aging, 15, 355360.
Braak, H., & Braak, E. (1997). Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiology of Aging, 18, 351357.
Bigler, E.D., Neeley, E.S., Miller, M.J., Tate, D.F., Rice, S.A., Cleavinger, H., et al. . (2004). Cerebral volume loss, cognitive deficit and neuropsychological performance: Comparative measures of brain atrophy: I. Dementia. Journal of the International Neuropsychological Society, 10, 442452.
Bigler, E.D., & Tate, D.F. (2001). Brain Volume, intracranial volume, and dementia. Investigative Radiology, 36, 539546.
Buckley, M.J. (2005). The role of the perirhinal cortex and hippocampus in learning, memory, and perception. The Quarterly Journal of Experimental Psychology, 58B, 246268.
Buckner, R.L., Head, D., Parker, J., Fotenos, A.F., Marcus, D., Morris, J.C., et al. . (2004). A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: Reliability and validation against manual measurement of total intracranial volume. Neuroimage, 33, 724738.
Charlson, M.E., Pompei, P., Ales, K.L., & MacKenzie, C.R. (1987). A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. Journal of Chronic Disorders, 40, 373383.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Earlbaum Associates.
deToledo-Morrell, L., Stoub, T.R., Bulgakova, M., Wilson, R.S., Bennett, D.A., Leurgans, S., et al. . (2004). MRI derived entorhinal volume is a good predictor of conversion from MCI to AD. Neurobiology of Aging, 25, 11971203.
Dickerson, B.C., Fezcko, E., Augustinack, J.C., Pacheco, J., Morris, J.C., Fischl, B., et al. . (2009). Differential effects of aging and Alzheimer’s disease on medial temporal lobe cortical thickness and surface area. Neurobiology of Aging, 30, 432440.
Feczko, E., Augustinack, J.C., Fischl, B., & Dickerson, B.C. (2009). An MRI-based method for measuring volume, thickness and surface area of entorhinal, perirhinal, and posterior parahippocampal cortex. Neurobiology of Aging, 30, 420431.
Fischl, B., Stevens, A.A., Rajendran, N., Yeo, T., Greve, D.N., Leemput, K., et al. . (2009). Predicting the location of entorhinal cortex from MRI. Neuroimage, 47, 817.
Folstein, M., Folstein, S., & McHugh, P. (1975). Mini-mental state: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatry Research, 12, 189198.
Goncharova, I.I., Dickerson, B.C., Stoub, T.R., & deToledo-Morrell, L. (2001). MRI of human entorhinal cortex: A reliable protocol for volumetric measurement. Neurobiology of Aging, 22, 737745.
Honeycutt, N.A., Smith, P.D., Ayward, E., Li, Q., Chan, M., Barta, P.E., et al. . (1998). Mesial temporal lobe measurements on magnetic resonance imaging scans. Psychiatry Research, 26, 8594.
Insausti, R., Juottonen, K., Soininen, H., Insausti, A.M., Partanen, K., Vainio, P., et al. . (1998). MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. AJNR American Journal of Neuroradiology, 19, 659671.
Insausti, R., Tunon, T., Sobreviela, T., Insausti, A.M., & Gonzalo, L.M. (1995). The human entorhinal cortex: A cytoarchitectonic analysis. The Journal of Comparative Neurology, 355, 171198.
Jeukens, C.R., Vlooswijk, M.C., Majoie, H.J., de Krom, M.C., Aldenkamp, A.P., Hofman, P.A., et al. . (2009). Hippocampal MRI volumetry at 3 Tesla: Reliability and practical guidance. Investigative Radiology, 44, 509517.
Juottonen, K., Laakso, M.P., Partanen, K., & Soininen, H. (1999). Comparative MR analysis of the entorhinal cortex and hippocampus in diagnosing Alzheimer disease. AJNR American Journal of Neuroradiology, 20, 139144.
Landis, J.R., & Koch, G.G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159174.
Lawton, M.P., & Brody, E.M. (1969). Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist, 9, 179186.
Leonard, B.W., Amaral, D.G., Squire, L.R., & Zola-Morgan, S. (1995). Transient memory impairment in monkeys with bilateral lesions of the entorhinal cortex. Journal of Neuroscience, 15, 56375659.
Newcomer, J.W., Selke, G., Melson, A., Hershey, T., Craft, S., Richards, K., et al. . (1999). Decreased memory performance in healthy humans induced by stress-level cortisol treatment. Archives of General Psychiatry, 56, 527533.
Reitz, C., Brickman, A., Brown, T.R., Manly, J., DeCarli, C., Small, S.A., et al. . (2009). Linking hippocampal structure and function to memory performance in an aging population. Archives of Neurology, 66, 13851392.
Rosen, A.C., Prull, M.W., Gabrieli, J.D., Stoub, T., O’Hara, R., Friedman, L., et al. . (2003). Differential associations between entorhinal and hippocampal volumes and memory performance in older adults. Behavioral Neuroscience, 117, 11501160.
Shattuck, D.W., & Leahy, R.M. (2002). BrainSuite: An automated cortical surface identification tool. Medical Image Analysis, 6, 129142.
Sheikh, J.I., & Yesavage, J.A. (1986). Geriatric depression scale (GDS): Recent evidence and development of a shorter version. In Brink, T.L. (Ed.), Clinical gerontology: A guide to assessment and intervention (pp. 165173). Binghamton, NY: Haworth Press.
Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E., Johansen-Berg, H., et al. . (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23(Suppl. 1), S208S219.
von Gunten, A., Bouras, C., Kovari, E., Giannakopoulos, P., & Hof, P.R. (2006). Neural substrates of cognitive and behavioral deficits in atypical Alzheimer’s disease. Brain Research Reviews, 51, 176211.
Warner, R.M. (2008). Applied statistics: From bivariate through multivariate techniques (pp. 276277). Los Angeles: SAGE Publications.
Wechsler, D. (1999). Wechsler abbreviated scale of intelligence. San Antonio, TX: The Psychological Corporation.
Wechsler, D. (1987). Wechsler memory scale–revised. New York, NY: Harcourt Brace Jovanovich.
Xu, Y., Jack, C.R. Jr., O’Brien, P.C., Kokmen, E., Smith, G.E., Ivnik, R.J., et al. . (2000). Usefulness of MRI measures of entorhinal cortex versus hippocampus in AD. Neurology, 54, 17601767.
Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C., et al. . (2006). User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage, 31, 11161128.
Zhan, J., Brys, M., Glodzik, L., Tsui, W., Javier, E., Wegiel, J., et al. . (2009). An entorhinal cortex sulcal pattern is associated with Alzheimer’s disease. Human Brain Mapping, 30, 874882.
Zikjenbos, A.P., Dawant, B.M., Margolin, R.A., & Palmer, A.C. (1994). Morphometric analysis of white matter lesions in MR images: Method and validation. IEEE Transactions on Medical Imaging, 13, 716724.
Zola-Morgan, S., Squire, L.R., & Amaral, D.G. (1986). Human amnesia and the medial temporal region: Enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. Journal of Neuroscience, 6, 29502967.


Entorhinal cortex volume in older adults: Reliability and validity considerations for three published measurement protocols

  • C.C. PRICE (a1) (a2) (a3), M.F. WOOD (a4), C.M. LEONARD (a2) (a5), S. TOWLER (a1), J. WARD (a1), H. MONTIJO (a6), I. KELLISON (a1), D. BOWERS (a1) (a2), T. MONK (a7), J.C. NEWCOMER (a8) and I. SCHMALFUSS (a9) (a10)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed