Skip to main content Accessibility help

Attention Difficulties in a Contemporary Geographic Cohort of Adolescents Born Extremely Preterm/Extremely Low Birth Weight

  • Michelle Wilson-Ching (a1) (a2), Carly S. Molloy (a1) (a2), Vicki A. Anderson (a1) (a3) (a4), Alice Burnett (a1) (a2), Gehan Roberts (a1) (a2) (a3), Jeanie L.Y. Cheong (a1) (a2) (a5), Lex W. Doyle (a1) (a2) (a5) and Peter J. Anderson (a1) (a2) (a3)...


The aim of this study was to evaluate attention difficulties in a contemporary geographic cohort of adolescents born extremely preterm (EP, <28 weeks’ gestation) or extremely low birth weight (ELBW, birth weight <1000 g). The EP/ELBW group included 228 adolescents (mean age = 17.0 years) born in Victoria, Australia in 1991 and 1992. The control group were 166 adolescents (mean age = 17.4 years) born of normal birth weight (birth weight >2499 g) who were recruited in the newborn period and matched to the EP/ELBW group on date of birth, gender, language spoken and health insurance status. Participants were assessed on measures of selective, sustained, and executive (shift and divided) attention, and parents and participants completed behavioral reports. The EP/ELBW group performed more poorly across tests of selective and executive attention, had greater rates of clinically significant difficulties compared with the control group, and also had greater behavioral attention problems as reported by parents. Neonatal risk factors were weakly associated with attention outcomes. In conclusion, higher rates of attention impairments are observed in individuals born EP/ELBW well into adolescence and may have consequences for their transition to adulthood. (JINS, 2013, 19, 1–12)


Corresponding author

Correspondence and reprint requests to: Michelle Wilson-Ching, Victorian Infant Brain Studies, Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria, Australia, 3052. E-mail:


Hide All
Aarnoudse-Moens, C., Smidts, D., Oosterlaan, J., Duivenvoorden, H., Weisglas-Kuperus, N. (2009). Executive function in very preterm children at early school age. Journal of Abnormal Child Psychology, 37(7), 981993.
Aarnoudse-Moens, C., Weisglas-Kuperus, N., van Goudoever, J.B., Oosterlaan, J. (2009). Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics, 124(2), 717728. doi:10.1542/peds.2008-2816
Anderson, P.J., Anderson, V., Northam, E., Taylor, H.G. (2000). Standarization of the Contingency Naming Test (CNT) for school-aged children: A measure of reactive flexibility. Clinical Neuropsychological Assessment, 1, 247273.
Anderson, P.J., De Luca, C., Hutchinson, E., Spencer-Smith, M., Roberts, G., Doyle, L., the Victorian Infant Collaborative Study Group (2011). Attention problems in a representative sample of extremely preterm/extremely low birth weight children. Developmental Neuropsychology, 36(1), 5773.
Anderson, P.J., Doyle, L.W., the Victorian Collaborative Study Group (2003). Neurobehavioural outcomes of school-age children born low birth weight or very preterm in the 1990s. JAMA, 289(24), 32643272.
Anderson, P.J., Doyle, L.W., the Victorian Collaborative Study Group. (2004). Executive function in school-aged children who are were born very preterm or with extremely low bith weight in the 1990s. Pediatrics, 114(1), 5057.
Anderson, V. (2008). Attention deficits and the frontal lobes. In V. Anderson, R. Jacobs, & P. Anderson (Eds.), Executive functions and the frontal lobes. New York, NY: Psychology Press.
Ballard, J.C. (2001). Assessing attention: Comparison of response-inhibition and traditional continuous performance tests. Journal of Clinical and Experimental Neuropsychology, 23(3), 331350.
Bayless, S., Stevenson, J. (2007). Executive functions in school-age children born very prematurely. Early Human Development, 83(4), 247254.
Betts, J., McKay, J., Maruff, P., Anderson, V. (2006). The development of sustained attention in children: The effect of age and task load. Child Neuropsychology, 12(3), 205221.
Bhutta, A.T., Cleves, M.A., Casey, P.H., Cradock, M.M., Anand, K.J.S. (2002). Cognitive and behavioural outcomes of school-aged children who were born preterm. JAMA, 288(6), 728737.
Botting, N., Powls, A., Cooke, R.W., Marlow, N. (1997). Attention deficit hyperactivity disorders and other psychiatric outcomes in very low birthweight children at 12 years. The Journal of Child Psychology and Psychiatry, 38(8), 931941.
Breslau, N., Chilcoat, H.D. (2000). Psychiatric sequelae of low birth weight at 11 years of age. Biological Psychiatry, 47(11), 10051011.
Breslau, N., Chilcoat, H., DelDotto, J., Andreski, P., Brown, G. (1996). Low birth weight and neurocognitive status at six years of age. Biological Psychiatry, 40(5), 389397.
Cole, T.J., Freeman, J.V., Preece, M.A. (1998). British 1990 growth reference centiles for weight, height, body mass index and head circumference fitted by maximum penalized likelihood. Statistics in Medicine, 17(4), 407429.
Conners, C.K. (1997). Conners’ Rating Scales-Revised. Technical manual. North Tonawanda, NY: Multi-Health Systems.
De Los Reyes, A., Kazdin, A.E. (2005). Informant discrepancies in the assessment of childhood psychopathology: A critical review, theoretical framework, and recommendations for further study. Psychological Bulletin, 131(4), 483509.
Dennis, M., Francis, D.J., Cirino, P., Schachar, R., Barnes, M.A., Fletcher, J.M. (2009). Why IQ is not a covariate in cognitive studies of neurodevelopmental disorders. Journal of the International Neuropsychological Society, 15, 331343.
Doyle, L.W., & the Victorian Collaborative Study Group. (2001). Outcome at 5 years of age of children 23 to 27 weeks’ gestation: Refining the prognosis. Pediatrics, 108(1), 134141.
Doyle, L.W., & the Victorian Collaborative Study Group. (2004). Evaluation of neonatal intensive care for extremely low birth weight infants in Victoria over two decades: I. Effectiveness. Pediatrics, 113, 505509.
Dupin, R., Laurent, J.-P., Stauder, J.E.A., Saliba, E. (2000). Auditory attention processing in 5-year-old children born preterm: Evidence from event-related potentials. Developmental Medicine & Child Neurology, 42(07), 476480. doi:10.1017/S0012162200000888
Elgen, I., Lundervold, A.J., Sommerfelt, K. (2004). Aspects of inattention in low birth weigh children. Pediatric Neurology, 30(2), 9298.
Fan, J., McCandliss, B.D., Fossella, J., Flombaum, J.I., Posner, M.I. (2005). The activation of attentional networks. Neuroimage, 26(2), 471479.
Fan, J., McCandliss, B.D., Sommer, T., Raz, A., Posner, M.I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14(3), 340347.
Fernandez-Duque, D., Baird, J.A., Posner, M.I. (2000). Executive attention and metacognitive regulation. Consciousness and Cognition, 9(2), 288307.
Fernandez-Duque, D., Posner, M.I. (2001). Brain imaging of attentional networks in normal and pathological states. Journal of Clinical and Experimental Psychology, 23(1), 7493.
Foreman, N., Fielder, A., Minshell, C., Hurrion, E., Sergienko, E. (1997). Visual search, perception, and visual-motor skill in “healthy” children born at 27-32 weeks’ gestation. Journal of Experimental Child Psychology, 64(1), 2741.
Frith, C.D., Friston, K.J. (1996). The role of the thalamus in “top down” modulation of attention to sound. Neuroimage, 4(3), 210215.
Gardner, F., Johnson, A., Yudkin, P., Bowler, U., Hockley, C., Mutch, L., … Extremely Low Gestational Age Steering Group. (2004). Behavioral and emotional adjustment of teenagers in mainstream school who were born before 29 weeks’ gestation. Pediatrics, 114(3), 676682. doi:10.1542/peds.2003-0763-L
Gioia, G.A., Isquith, P.K., Guy, S.C., Kenworthy, L. (2000). Behavior rating inventory of executive function. Professional manual. Lutz, FL: Psychological Assessment Resources.
Grunau, R.E., Whitfield, M.F., Fay, T.B. (2004). Psychosocial and academic characteristics of extremely low birth weight (<800) adolescents who were free of major impairment compared with term-born control subjects. Pediatrics, 114(6), e725e732.
Hasher, L. (2007). Inhibition: Attentional regulation in cognition. In H. Roediger, Y. Dudai, & S. Fitzpatrick (Eds.), Science of memory: Concepts. New York: Oxford University Press.
Hooper, C.J., Luciana, M., Conklin, H.M., Yarger, R.S. (2004). Adolescents’ performance on the Iowa gambling task: Implications for the development of decision making and ventromedial prefrontal cortex. Developmental Psychology, 40(6), 11481158.
Huizinga, M., Dolan, C.V., van der Molen, M.W. (2006). Age-related change in executive function: Developmental trends and a latent variable analysis. Neuropsychologia, 44(11), 20172036.
Inder, T.E., Wells, S.J., Mogridge, N.B., Spencer, C., Volpe, J.J. (2003). Defining the nature of cerebral abnormalities in the premature infant: A qualitative magnetic resonance imaging study. The Journal of Pediatrics, 143, 171179.
Indredavik, M.S., Vik, T., Heyerdahl, S., Romundstad, P., Brubakk, A.M. (2005). Low-birthweight adolescents: Quality of life and parent-child relations. Acta Paediatrica, 94(9), 12951302.
Johnson, S., Hollis, C., Kochhar, P., Hennessy, E., Wolke, D., Marlow, N. (2010). Psychiatric disorders in extremely preterm children: Longitudinal finding at age 11 years in the EPICure Study. Journal of the American Academy of Child and Adolescent Psychiatry, 49(5), 453463.
Katz, K.S., Dubowitz, L.M., Henderson, S., Jongmans, M. (1996). Effect of cerebral lesions on Continuous Performance Test responses of school age children born prematurely. Journal of Pediatric Psychology, 21(6), 841855.
Konrad, K., Neufang, S., Thiel, C.M., Specht, K., Hanisch, C., Fan, J., Fink, G.R. (2005). Development of attentional networks: An fMRI study with children and adults. Neuroimage, 28, 429439.
Kolko, D.J., Kazdin, A.E. (1993). Emotional/behavioral problems in clinic and nonclinic children: Correspondence among child, parent and teacher reports. Journal of Child Psychology and Psychiatry, 34(6), 9911006. doi:10.1111/j.1469-7610.1993.tb01103.x
Kulseng, S., Jennekens-Schinkel, A., Naess, P., Romundstad, P.l., Indredavik, M., Vik, T., Brubakk, A. (2006). Very-low-birthweight and term small-for-gestational-age adolescents: Attention revisited. Acta Paediatrica, 95(2), 224230.
Leark, R.S., Greenberg, L.M., Kindschi, C., Dupuy, T., Hughes, S. (2007). T.O.V.A. Professional manual: Test of variables of attention continuous performance test. Los Alamitos, CA: The TOVA Company.
Leon-Carrion, J., Garcia-Orza, J., Perez-Santamaria, F.J. (2004). Development of the inhibitory component of the executive functions in children and adolescents. International Journal of Neuroscience, 114(10), 12911311.
Ligam, P., Haynes, R.L., Folkerth, R.D., Liu, L., Yang, M., Volpe, J.J., Kinney, H.C. (2009). Thalamic damage in periventricular leukomalacia: Novel pathologic observations relevant to cognitive deficits in survivors of prematurity. Pediatric Research, 65(5), 524529. doi:510.1203/PDR.1200b1013e3181998baf
Lin, C., Hsiao, C.K., Chen, W.J. (1999). Development of sustained attention assessed using the continuous performance test among children 6-15 years of age. Journal of Abnormal Child Psychology, 27(5), 403412.
Luna, B., Sweeney, J.A. (2004). The Emergence of collaborative brain function: fMRI studies of the development of response inhibition. Annals of the New York Academy of Sciences, 1021(1), 296309.
Majnemer, A., Riley, P., Shevell, M., Birnbaum, R., Greenstone, H., Coates, A.L. (2000). Severe bronchopulmonary dysplasia increases risk for later neurological and motor sequelae in preterm survivors. Developmental Medicine & Child Neurology, 42(01), 5360. doi:10.1017/S001216220000013X
McKay, K.E., Halperin, J.M., Schwartz, S.T., Sharma, V. (1994). Developmental analysis of three aspects of information processing: Sustained attention, selective attention and response organization. Developmental Neuropsychology, 10(2), 121132.
Mellier, D., Fessard, C. (1998). Preterm birth and cognitive inhibition. European Review of Applied Psychology, 48(1), 1317.
Mick, E., Biederman, J., Prince, J., Fischer, M., Faraone, S. (2002). Impact of low birth weight on attention-deficit hyperactivity disorder. Journal of Developmental and Behavioural Pediatrics, 23(1), 1622.
Mirsky, A.F. (1989). The neuropsychology of attention: Elements of a complex behaviour. In E. Perecman (Ed.), Integrating theory and practice in clinical neuropsychology (pp. 7591). Hillsdale, NJ: Lawrence Erlbaum Associates.
Mirsky, A.F., Anthony, B.J., Duncan, C.C., Ahearn, M.B., Kellam, S.G. (1991). Analysis of the elements of attention: A neuropsychological approach. Neuropsychology Review, 2(2), 109145.
Mirsky, A.F., Duncan, C.C. (2001). A nosology of disorders of attention. Annals of the New York Academy of Science, 931, 1732.
Nagy, Z., Westerberg, H., Skare, S., Andersson, J.L., Lilja, A., Flodmark, O., Klingberg, T. (2003). Preterm children have disturbances of white matter at 11 years of age as shown by diffusion tensor imaging. Pediatric Research, 54(5), 672679.
Nosarti, C., Giouroukou, E., Micali, N., Rifkin, L., Morris, R.G., Murray, R.M. (2007). Impaired executive functioning in young adults born very preterm. Journal of the International Neuropsychological Society, 13, 571581.
Pizzo, R., Urben, S., van der Linden, M., Borradori-Tolsa, C., Freschi, M., Forcada-Guex, M., Barisnikov, K. (2010). Attentional networks efficiency in preterm children. Journal of the International Neuropsychological Society, 16, 130137.
Posner, M.I., Digirolamo, G.J. (1998). Executive attention: Conflict target detection and cognitive control. In R. Parasuraman (Ed.), The attentive brain (pp. 401423). Cambridge, MA: MIT Press.
Posner, M.I., Gilbert, C.D. (1999). Attention and primary visual cortex. Proceedings of the National Academy of Science of the United States of America, 96(6), 25852587.
Posner, M.I., Petersen, S.E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 2542.
Posner, M.I., Rothbart, M.K. (1998). Attention, self-regulation and consciousness. Philosophical Transactions of the Royal Society of London B Biological Sciences, 353(1377), 19151927.
Posner, M.I., Sheese, B.E., Odludas, Y., Tang, Y. (2006). Analyzing and shaping human attentional networks. Neural Networks, 19(9), 14221429.
Raz, A. (2004). Anatomy of attentional networks. The Anatomical Record, 281B, 2136.
Raz, A., Buhle, J. (2006). Typologies of attentional networks. Nature, 7, 367379.
Rebok, G.W., Smith, C.B., Pascualvaca, D.M., Mirsky, A.F., Anthony, B.J., Kellam, S.G. (1997). Developmental changes in attentional performance in urban children from eight to thirteen years. Child Neuropsychology, 3(1), 2846.
Rickards, A.L., Kitchen, W.H., Doyle, L.W., Kelly, E.A. (1989). Correction of developmental and intelligence test scores for premature birth. Journal of Paediatrics and Child Health, 25(3), 127129.
Robertson, I., Ward, T., Ridgeway, V., Smith-Nimmo, I. (1994). The test of everyday attention. Bury, St Edmund, England: Thames Valley Test Company.
Ross, G., Lipper, E.G., Auld, P.A. (1991). Educational status and school-related abilities of very low birth weight premature children. Pediatrics, 88(6), 11251134.
Rothbart, M.K., Ellis, L.K., Rueda, M.R., Posner, M.I. (2003). Developing mechanisms of temperamental effortful control. Journal of Personality, 71(6), 11131143.
Rueda, M.R., Fan, J., McCandliss, B.D., Halparin, J.D., Gruber, D.B., Pappert Lercari, L., Posner, M.I. (2004). Development of attentional networks in childhood. Neuropsychologia, 42, 10291040.
Russell, K., Hudson, M., Long, A., Phipps, S. (2006). Assessment of health-related quality of life in children with cancer: Consistency and agreement between parent and child reports. Cancer, 106(10), 22672274.
Saigal, S., Pinelli, J., Hoult, L., Kim, M.M., Boyle, M. (2003). Psychopathology and social competencies of adolescents who were extremely low birth weight. Pediatrics, 111(5), 969975.
Salmi, J., Rinne, T., Degerman, A., Salonen, O., Alho, K. (2007). Orienting and maintenance of spatial attention in audition and vision: Multimodal and modality-specific brain activations. Brain Structure and Function, 212(2), 181194.
Sarter, M., Givens, B., Bruno, J. (2001). The cognitive neuroscience of sustained attention: Where top-down meets bottom-up. Brain Research Reviews, 35, 146160.
Short, E.J., Klein, N.K., Lewis, B.A., Fulton, S., Eisengart, S., Kercsmar, C., Singer, L.T. (2003). Cognitive and academic consequences of bronchopulmonary dysplasia and very low birth weight: 8-year-old outcomes. Pediatrics, 112(5), e359.
Shum, D., Neulinger, K., O'Callaghan, M., Mohay, H. (2008). Attentional problems in children born very preterm or with extremely low birth weight at 7-9 years. Archives of Clinical Neuropsychology, 23(1), 103112. doi:10.1016/j.acn.2007.08.006
Skranes, J., Lohaugen, G.C., Martinussen, M., Indredavik, M.S., Dale, A.M., Haraldseth, O., Brubakk, A.-M. (2009). White matter abnormalities and executive function in children with very low birth weight. Neuroreport, 20(3), 263266.
Skranes, J., Vangberg, T.R., Kulseng, S., Indredavik, M.S., Evensen, K.A.I., Martinussen, M., Brubakk, A.M. (2007). Clinical findings and white matter abnormalities seen on diffusion tensor imaging in adolescents with very low birth weight. Brain, 130(3), 654666. doi:10.1093/brain/awm001
Steinberg, L. (2005). Cognitive and affective development in adolescence. Trends in Cognitive Sciences, 9(2), 6974.
Sturm, W., Willmes, K. (2001). On the functional neuroanatomy of intrinsic and phasic alertness. Neuroimage, 14(1), S76S84. doi:10.1006/nimg.2001.0839
Taylor, H.G., Albo, V., Phebus, C., Sachs, B., Bierl, P. (1987). Postirradiation treatment outcomes for children with acute lymphoblastic leukemia: Clarification of risks. Journal of Pediatric Psychology, 12(3), 395411.
Taylor, H.G., Minich, N., Bangert, B., Filipek, P.A., Hack, M. (2004). Long-term neuropsychological outcomes of very low birth weight: Associations with early risks for periventricular brain insults. Journal of the International Neuropsychological Society, 10, 9871004.
The Psychological Corporation. (1999). Wechsler Abbreviated Scale of Intelligence (WASI) manual. San Antonio, TX: The Psychological Corporation.
The Victorian Infant Collaborative Study Group. (1997). Outcome at 2 years of children 23-27 weeks’ gestation born in Victoria in 1991-92. Journal of Paediatrics and Child Health, 33(2), 161165.
Treyvaud, K., Ure, A., Doyle, L.W., Lee, K.J., Rogers, C.E., Kidokoro, H., Anderson, P.J. (2013). Psychiatric outcomes at age seven for very preterm children: Rates and predictors. Journal of Child Psychology and Psychiatry. doi:10.1111/jcpp.12040
Wechsler, D. (1991). Manual for the Wechsler Scale of Children's Intelligence (WISC-III). (3rd ed.). New York, NY: The Psychological Corporation.
White-Koning, M., Arnaud, C., Dickinson, H.O., Thyen, U., Beckung, E., Fauconnier, J., Colver, A. (2007). Determinants of child-parent agreement in quality-of-life reports: A European study of children with cerebral palsy. Pediatrics, 120(4), e804e814. doi:10.1542/peds.2006-3272
Yeh, T.F., Lin, Y.J., Lin, H.C., Huang, C.C., Hsieh, W.S., Lin, C.H., Tsai, C.H. (2004). Outcomes at school age after postnatal dexamethasone therapy for lung disease of prematurity. New England Journal of Medicine, 350(13), 13041313. doi:10.1056/NEJMoa032089



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed