Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-02T02:37:51.511Z Has data issue: false hasContentIssue false

Asymmetrical Effects of Adaptation to Left- and Right-Shifting Prisms Depends on Pre-existing Attentional Biases

Published online by Cambridge University Press:  05 July 2010

KELLY M. GOEDERT*
Affiliation:
Department of Psychology, Seton Hall University, South Orange, New Jersey
ANDREW LEBLANC
Affiliation:
Department of Psychology, Seton Hall University, South Orange, New Jersey
SEN-WEI TSAI
Affiliation:
Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital, Taichung, Taiwan
ANNA M. BARRETT
Affiliation:
Kessler Foundation Research Center, West Orange, New Jersey Departments of Physical Medicine and Rehabilitation and Neurology and Neurosciences, University of Medicine and Dentistry of New Jersey, NJ Medical School, Newark, New Jersey
*
*Correspondence and reprint requests to: Kelly M. Goedert, Department of Psychology, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079. E-mail: kelly.goedert@shu.edu

Abstract

Proposals that adaptation with left-shifting prisms induces neglect-like symptoms in normal individuals rely on a dissociation between the postadaptation performance of individuals trained with left- versus right-shifting prisms (e.g., Colent, Pisella, & Rossetti, 2000). A potential problem with this evidence is that normal young adults have an a priori leftward bias (e.g., Jewell & McCourt, 2000). In Experiment 1, we compared the line bisection performance of young adults to that of aged adults, who as a group may lack a leftward bias in line bisection. Participants trained with both left- and right-shifting prisms. Consistent with our hypothesis, while young adults demonstrated aftereffects for left, but not right prisms, aged adults demonstrated reliable aftereffects for both prisms. In Experiment 2, we recruited a larger sample of young adults, some of whom were right-biased at baseline. We observed an interaction between baseline bias and prism-shift, consistent with the results of Experiment 1: Left-biased individuals showed a reduced aftereffect when training with right-shifting prisms and right-biased individuals showed a reduced aftereffect when training with left-shifting prisms. These results suggest that previous failures to find generalizable aftereffects with right-shifting prisms may be driven by participants’ baseline biases rather than specific effects of the prism itself. (JINS, 2010, 16, 795–804.)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barrett, A.M., & Burkholder, S. (2006). Monocular patching in subjects with right-hemisphere stroke affects perceptual-attentional bias. Journal of Rehabilitation Research and Development, 43, 337346. DOI:10.1682/JRRD.2005.01.0015.CrossRefGoogle ScholarPubMed
Barrett, A.M., & Craver-Lemley, C. (2008). Is it what you see, or how you say it? spatial bias in young and aged subjects. Journal of the International Neuropsychological Society, 14, 562570. DOI:10.1017/S1355617708080764.CrossRefGoogle ScholarPubMed
Berberovic, N., & Mattingley, J.B. (2003). Effects of prismatic adaptation on judgements of spatial extent in peripersonal and extrapersonal space. Neuropsychologia, 41, 493503. DOI:10.1016/S0028-3932(02)00090-8.CrossRefGoogle ScholarPubMed
Bowers, D., & Heilman, K.M. (1980). Pseudoneglect: Effects of hemispace on a tactile line bisection task. Neuropsychologia, 18, 491498. DOI:10.1016/0028-3932(80)90151-7.CrossRefGoogle ScholarPubMed
Bultitude, J.H., & Aimola Davies, A.M. (2006). Putting attention on the line: Investigating the activation-orientation hypothesis of pseudoneglect. Neuropsychologia, 44, 18491858. DOI:10.1016/j.neuropsychologia.2006.03.001.CrossRefGoogle ScholarPubMed
Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging, 17, 85100. DOI:10.1037/0882-7974.17.1.85.CrossRefGoogle ScholarPubMed
Charles, J., Sahraie, A., & McGeorge, P. (2007). Hemispatial asymmetries in judgment of stimulus size. Perception & Psychophysics, 69, 687698.CrossRefGoogle ScholarPubMed
Colent, C., Pisella, L., & Rossetti, Y. (2000). Cognitive bias induced by visuo-motor adaptation to prisms: A simulation of unilateral neglect in normal individuals? Neuroreport, 11, 18991902. DOI:10.1097/00001756-200006260-00019.CrossRefGoogle ScholarPubMed
Failla, C.V., Sheppard, D.M., & Bradshaw, J.L. (2003). Age and responding-hand related changes in performance of neurologically normal subjects on the line-bisection and chimeric-faces tasks. Brain and Cognition, 52, 353363. DOI:10.1016/S0278-2626(03)00181-7.CrossRefGoogle ScholarPubMed
Fernández-Ruiz, J., Hall, C., Vergara, P., & Díaz, R. (2000). Prism adaptation in normal aging: Slower adaptation rate and larger aftereffect. Cognitive Brain Research, 9, 223226. DOI:10.1016/S0926-6410(99)00057-9.CrossRefGoogle ScholarPubMed
Fink, G.R., Marshall, J.C., Shah, N.J., Weiss, P.H., Halligan, P.W., Grosse-Ruyken, M., et al. . (2000). Line bisection judgments implicate right parietal cortex and cerebellum as assessed by fMRI. Neurology, 54, 13241331.CrossRefGoogle ScholarPubMed
Fink, G.R., Marshall, J.C., Weiss, P.H., & Zilles, K. (2001). The neural basis of vertical and horizontal line bisection judgments: An fMRI study of normal volunteers. Neuroimage, 14, S59S67. DOI:10.1006/nimg.2001.0819.CrossRefGoogle ScholarPubMed
Fujii, T., Fukatsu, R., Yamadori, A., & Kimura, I. (1995). Effect of age on the line bisection test. Journal of Clinical and Experimental Neuropsychology, 17, 941946. DOI:10.1080/01688639508402443.CrossRefGoogle ScholarPubMed
Girardi, M., McIntosh, R.D., Michel, C., Vallar, G., & Rossetti, Y. (2004). Sensorimotor effects on central space representation: Prism adaptation influences haptic and visual representations in normal subjects. Neuropsychologia, 42, 14771487. DOI:10.1016/j.neuropsychologia.2004.03.008.CrossRefGoogle ScholarPubMed
Gottesman, R.F., Kleinman, J.T., Davis, C., Heidler-Gary, J., Newhart, M., Kannan, V., et al. . (2008). Unilateral neglect is more severe and common in older patients with right hemispheric stroke. Neurology, 71, 14391444. DOI:10.1212/01.wnl.0000327888.48230.d2.CrossRefGoogle ScholarPubMed
Heilman, K.M., Watson, R.T., & Valenstein, E. (2003). Neglect and related disorders. In Valenstein, E. (Ed.), Clinical neuropsychology (4th ed.). (pp. 296346). New York, NY: Oxford University Press.CrossRefGoogle Scholar
Jewell, G., & McCourt, M.E. (2000). Pseudoneglect: A review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia, 38, 93110. DOI:10.1016/S0028-3932(99)00045-7.CrossRefGoogle ScholarPubMed
Keane, S., Turner, C., Sherrington, C., & Beard, J.R. (2006). Use of fresnel prism glasses to treat stroke patients with hemispatial neglect. Archives of Physical Medicine and Rehabilitation, 87, 16681672. DOI:10.1016/j.apmr.2006.08.322.CrossRefGoogle ScholarPubMed
Luauté, J., Halligan, P., Rode, G., Jacquin-Courtois, S., & Boisson, D. (2006). Prism adaptation first among equals in alleviating left neglect: A review. Restorative Neurology and Neuroscience, 24, 409418.Google ScholarPubMed
Luauté, J., Schwartz, S., Rossetti, Y., Spiridon, M., Rode, G., Boisson, D., et al. . (2009). Dynamic changes in brain activity during prism adaptation. The Journal of Neuroscience, 29, 169178. DOI:10.1523/JNEUROSCI.3054-08.2009.CrossRefGoogle ScholarPubMed
Luh, K.E. (1995). Line bisection and perceptual asymmetries in normal individuals: What you see is not what you get. Neuropsychology, 9, 435448. DOI:10.1037/0894-4105.9.4.435.CrossRefGoogle Scholar
Manly, T., Dobler, V.B., Dodds, C.M., & George, M.A. (2005). Rightward shift in spatial awareness with declining alertness. Neuropsychologia, 43, 17211728. DOI:10.1016/j.neuropsychologia.2005.02.009.CrossRefGoogle ScholarPubMed
McCourt, M.E., & Jewell, G. (1999). Visuospatial attention in line bisection: Stimulus modulation of pseudoneglect. Neuropsychologia, 37, 843855. DOI:10.1016/S0028-3932(98)00140-7.CrossRefGoogle ScholarPubMed
Mesulam, M.-M. (2000). Attentional networks, confusional states, and neglect syndromes. In Mesulam, M.-M. (Ed.), Principles of behavioral and cognitive neurology (2nd ed.). (pp. 174256). New York, NY: Oxford University Press.CrossRefGoogle Scholar
Michel, C. (2006). Simulating unilateral neglect in normals: Myth or reality? Restorative Neurology and Neuroscience, 24, 419430.Google ScholarPubMed
Michel, C., Pisella, L., Halligan, P.W., Luauté, J., Rode, G., Boisson, D., et al. . (2003). Simulating unilateral neglect in normals using prism adaptation: Implications for theory. Neuropsychologia, 41, 2539. DOI:10.1016/S0028-3932(02)00135-5.CrossRefGoogle ScholarPubMed
Michel, C., Rossetti, Y., Rode, G., & Tilikete, C. (2003). After-effects of visuo-manual adaptation to prisms on body posture in normal subjects. Experimental Brain Research, 148, 219226. DOI:10.1007/s00221-002-1294-3.CrossRefGoogle ScholarPubMed
Michel, C., Vernet, P., Courtine, G., Ballay, Y., & Pozzo, T. (2008). Asymmetrical after-effects of prism adaptation during goal oriented locomotion. Experimental Brain Research, 185, 259268. DOI:10.1007/s00221-007-1152-4.CrossRefGoogle ScholarPubMed
Morton, S.M., & Bastian, A.J. (2004). Prism adaptation during walking generalizes to reaching and requires the cerebellum. Journal of Neurophysiology, 92, 24972509. DOI:10.1152/jn.00129.2004.CrossRefGoogle ScholarPubMed
Nicholls, M.E., Bradshaw, J.L., & Mattingley, J.B. (1999). Free-viewing perceptual asymmetries for the judgement of brightness, numerosity and size. Neuropsychologia, 37, 307314. DOI:10.1016/S0028-3932(98)00074-8.CrossRefGoogle ScholarPubMed
Redding, G.M., Rossetti, Y., & Wallace, B. (2005). Applications of prism adaptation: A tutorial in theory and method. Neuroscience and Biobehavioral Reviews, 29, 431444. DOI:10.1016/j.neubiorev.2004.12.004.CrossRefGoogle ScholarPubMed
Redding, G.M., & Wallace, B. (2001). Calibration and alignment are separable: Evidence from prism adaptation. Journal of Motor Behavior, 33, 401412.CrossRefGoogle ScholarPubMed
Redding, G.M., & Wallace, B. (2006). Generalization of prism adaptation. Journal of Experimental Psychology: Human Perception and Performance, 32, 10061022. DOI:10.1037/0096-1523.32.4.1006.Google ScholarPubMed
Reuter-Lorenz, P., Kinsbourne, M., & Moscovitch, M. (1990). Hemispheric control of spatial attention. Brain and Cognition, 12, 240266. DOI:10.1016/0278-2626(90)90018-J.CrossRefGoogle ScholarPubMed
Ringman, J.M., Saver, J.L., Woolson, R.F., Clarke, W.R., & Adams, H.P. (2004). Frequency, risk factors, anatomy, and course of unilateral neglect in an acute stroke cohort. Neurology, 63, 468474.CrossRefGoogle Scholar
Robinson, D.L., & Kertzman, C. (1990). Visuospatial attention: Effects of age, gender, and spatial reference. Neuropsychologia, 28, 291301. DOI:10.1016/0028-3932(90)90022-G.CrossRefGoogle ScholarPubMed
Rossetti, Y., Rode, G., Pisella, L., Farné, A., Li, L., Boisson, D., et al. . (1998). Prism adaptation to a rightward optical deviation rehabilitates left hemispatial neglect. Nature, 395, 166169. DOI:10.1038/25988.CrossRefGoogle ScholarPubMed
Striemer, C., Sablatnig, J., & Danckert, J. (2006). Differential influences of prism adaptation on reflexive and voluntary covert attention. Journal of the International Neuropsychological Society, 12, 337349. DOI:10.1017/S1355617706060553.CrossRefGoogle ScholarPubMed
Varnava, A., & Halligan, P.W. (2007). Influence of age and sex on line bisection: A study of normal performance with implications for visuospatial neglect. Aging, Neuropsychology, and Cognition, 14, 571585. DOI:10.1080/13825580600826454.CrossRefGoogle ScholarPubMed