Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-15T14:59:32.492Z Has data issue: false hasContentIssue false

Associations of category fluency clustering performance with in vivo brain pathology in autosomal dominant Alzheimer’s disease

Published online by Cambridge University Press:  26 April 2023

Defne Yucebas
Affiliation:
Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02155, USA
Joshua T. Fox-Fuller
Affiliation:
Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02155, USA Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
Alex Badillo Cabrera
Affiliation:
Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
Ana Baena
Affiliation:
Grupo de Neurociencias de Antioquia, University of Antioquia, Medellín, Colombia
Celina Pluim McDowell
Affiliation:
Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02155, USA Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
Paula Aduen
Affiliation:
Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
Clara Vila-Castelar
Affiliation:
Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
Yamile Bocanegra
Affiliation:
Grupo de Neurociencias de Antioquia, University of Antioquia, Medellín, Colombia Hospital Pablo Tobon Uribe, Medellín, Colombia
Victoria Tirado
Affiliation:
Grupo de Neurociencias de Antioquia, University of Antioquia, Medellín, Colombia Hospital Pablo Tobon Uribe, Medellín, Colombia
Justin S. Sanchez
Affiliation:
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
Alice Cronin-Golomb
Affiliation:
Department of Psychological and Brain Sciences, Boston University, Boston, MA, 02155, USA
Francisco Lopera
Affiliation:
Grupo de Neurociencias de Antioquia, University of Antioquia, Medellín, Colombia
Yakeel T. Quiroz*
Affiliation:
Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA Grupo de Neurociencias de Antioquia, University of Antioquia, Medellín, Colombia Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
*
Corresponding author: Yakeel T. Quiroz, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Boston, MA, 02129, USA. E-mail: yquiroz@mgh.harvard.edu

Abstract

Objectives:

Alzheimer’s disease (AD) is known to impact semantic access, which is frequently evaluated using the Category Fluency (Animals) test. Recent studies have suggested that in addition to overall category fluency scores (total number of words produced over time), poor clustering could signal AD-related cognitive difficulties. In this study, we examined the association between category fluency clustering performance (i.e., stating words sequentially that are all contained within a subcategory, such as domestic animals) and brain pathology in individuals with autosomal dominant Alzheimer’s disease (ADAD).

Methods:

A total of 29 non-demented carriers of the Presenilin1 E280A ADAD mutation and 32 noncarrier family members completed the category fluency test (Animals) and the Mini-Mental State Examination (MMSE). The participants also underwent positron emission tomography (PET) scans to evaluate in vivo amyloid-beta in the neocortex and tau in medial temporal lobe regions. Differences between carriers and noncarriers on cognitive tests were assessed with Mann-Whitney tests; associations between cognitive test performance and brain pathology were assessed with Spearman correlations.

Results:

Animal fluency scores did not differ between carriers and noncarriers. Carriers, however, showed a stronger association between animal fluency clustering and in vivo AD brain pathology (neocortical amyloid and entorhinal tau) relative to noncarriers.

Conclusion:

This study indicates that using category fluency clustering, but not total score, is related to AD pathophysiology in the preclinical and early stages of the disease.

Type
Research Article
Copyright
Copyright © INS. Published by Cambridge University Press, 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta-Baena, N., Sepulveda-Falla, D., Lopera-Gómez, C.M., Jaramillo-Elorza, M.C., Moreno, S., Aguirre-Acevedo, D.C., Saldarriaga, A., & Lopera, F. (2011). Pre-dementia clinical stages in presenilin 1 E280A familial early-onset Alzheimer’s disease: A retrospective cohort study. The Lancet. Neurology, 10(3), 213220. https://doi.org/10.1016/S1474-4422(10)70323-9 CrossRefGoogle ScholarPubMed
Alzheimer’s Association. (2022). Alzheimer’s disease facts and figures (2022). Alzheimer’s Dement 18. https://www.alz.org/media/Documents/alzheimers-facts-and-figures.pdf Google Scholar
Brucki, S.M., & Rocha, M.S. (2004). Category fluency test: Effects of age, gender and education on total scores, clustering and switching in Brazilian Portuguese-speaking subjects. Brazilian Journal of Medical and Biological Research=Revista brasileira de pesquisas medicas e biologicas, 37(12), 17711777. https://doi.org/10.1590/s0100-879x2004001200002 Google ScholarPubMed
Chan, A.S., Butters, N., & Salmon, D.P. (1997). The deterioration of semantic networks in patients with Alzheimer’s disease: A cross-sectional study. Neuropsychologia, 35(3), 241248. https://doi.org/10.1016/S0028-3932(96)00067-X CrossRefGoogle ScholarPubMed
Fagundo, A.B., López, S., Romero, M., Guarch, J., Marcos, T., & Salamero, M. (2008). Clustering and switching in semantic fluency: Predictors of the development of Alzheimer’s disease. International Journal of Geriatric Psychiatry, 23(10), 10071013. https://doi.org/10.1002/gps.2025 CrossRefGoogle ScholarPubMed
Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189198. https://doi.org/10.1016/0022-3956(75)90026-6 CrossRefGoogle ScholarPubMed
Fuller, J.T., Cronin-Golomb, A., Gatchel, J.R., Norton, D.J., Guzmán-Vélez, E., Jacobs, H.I.L., Hanseeuw, B., Pardilla-Delgado, E., Artola, A., Baena, A., Bocanegra, Y., Kosik, K.S., Chen, K., Tariot, P.N., Johnson, K., Sperling, R.A., Reiman, E.M., Lopera, F., & Quiroz, Y.T. (2019). Biological and cognitive markers of Presenilin1 E280A autosomal dominant Alzheimer’s disease: A comprehensive review of the Colombian Kindred. Journal of Prevention of Alzheimer’s Disease 6, 112120. https://doi.org/10.14283/jpad.2019.6 Google ScholarPubMed
Gomez, R.G., & White, D.A. (2006). Using verbal fluency to detect very mild dementia of the Alzheimer type. Archives of Clinical Neuropsychology: The Official Journal of the National Academy of Neuropsychologists, 21(8), 771775. https://doi.org/10.1016/j.acn.2006.06.012 CrossRefGoogle ScholarPubMed
Greve, D.N., Svarer, C., Fisher, P.M., Feng, L., Hansen, A.E., Baare, W., Rosen, B., Fischl, B. & Knudsen, G.M. (2014). Cortical surface-based analysis reduces bias and variance in kinetic modeling of brain PET data. NeuroImage, 92, 225236. https://doi.org/10.1016/j.neuroimage.2013.12.021 CrossRefGoogle ScholarPubMed
Guzmán-Vélez, E., Martínez, J., Papp, K., Baena, A., Vila-Castelar, C., Artola, A., Schultz, A.P., Bocanegra, Y., Sanchez, J., Rentz, D., Tariot, P.N., Reiman, E.M., Sperling, R., Johnson, K.A., Lopera, F., & Quiroz, Y.T. (2020). Associative memory and in vivo brain pathology in asymptomatic presenilin-1 E280A carriers. Neurology, 95(10), e1312e1321. https://doi.org/10.1212/WNL.0000000000010177 CrossRefGoogle ScholarPubMed
Haugrud, N., Crossley, M., & Vrbancic, M. (2011). Clustering and switching strategies during verbal fluency performance differentiate Alzheimer’s disease and healthy aging. Journal of the International Neuropsychological Society: JINS, 17(6), 11531157. https://doi.org/10.1017/S1355617711001196 Google ScholarPubMed
Jack, C.R., Bennett, D.A., Blennow, K., Carrillo, M.C., Dunn, B., Haeberlein, S.B., Holtzman, D.M., Jagust, W., Jessen, F., Karlawish, J., Liu, E., Molinuevo, J.L., Montine, T., Phelps, C., Rankin, K.P., Rowe, C.C., Scheltens, P., Siemers, E., Snyder, H.M., Sperling, R., & Silverberg, N. (2018). Nia-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s & Dementia, 14(4), 535562. https://doi.org/10.1016/j.jalz.2018.02.018 CrossRefGoogle Scholar
Johnson, K.A., Schultz, A., Betensky, R.A., Becker, J.A., Sepulcre, J., Rentz, D., Mormino, E., Chhatwal, J., Amariglio, R., Papp, K., Marshall, G., Albers, M., Mauro, S., Pepin, L., Alverio, J., Judge, K., Philiossaint, M., Shoup, T., Yokell, D. … & Sperling, R. (2016). Tau positron emission tomographic imaging in aging and early Alzheimer disease. Annals of Neurology, 79(1), 110119. https://doi.org/10.1002/ana.24546 CrossRefGoogle ScholarPubMed
Lezak, M.D., Howieson, D.B., Loring, D.W., & Fischer, J.S. (2004). Neuropsychological assessment. USA: Oxford University Press.Google Scholar
Liampas, I., Folia, V., Zoupa, E., Siokas, V., Yannakoulia, M., Sakka, P., Hadjigeorgiou, G., Scarmeas, N., Dardiotis, E., & Kosmidis, M. H. (2022). Qualitative verbal fluency components as prognostic factors for developing Alzheimer’s dementia and mild cognitive impairment: Results from the population-based HELIAD Cohort. Medicina, 58(12), 1814.CrossRefGoogle ScholarPubMed
Loewenstein, D.A., Curiel, R.E., DeKosky, S., Bauer, R.M., Rosselli, M., Guinjoan, S.M., Adjouadi, M., Peñate, A., Barker, W.W., Goenaga, S., Golde, T., Greig-Custo, M.T., Hanson, K.S., Li, C., Lizarraga, G., Marsiske, M., & Duara, R. (2018). Utilizing semantic intrusions to identify amyloid positivity in mild cognitive impairment. Neurology, 91(10), e976e984. https://doi.org/10.1212/WNL.0000000000006128 CrossRefGoogle Scholar
Logan, J., Fowler, J.S., Volkow, N.D., Wolf, A.P., Dewey, S.L., Schlyer, D.J., … & Gatley, S. J. (1990). Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 10(5), 740747. https://doi.org/10.1038/jcbfm.1990.127 CrossRefGoogle ScholarPubMed
Morris, J.C., Weiner, M., Xiong, C., Beckett, L., Coble, D., Saito, N., Aisen, P.S., Allegri, R., Benzinger, T.L.S., Berman, S.B., Cairns, N.J., Carrillo, M.C., Chui, H.C., Chhatwal, J.P., Cruchaga, C., Fagan, A.M., Farlow, M., Fox, N.C., Ghetti, B., … & Buckles, V.D., for the Dominantly Inherited Alzheimer Network and the Alzheimer’s Disease Neuroimaging Initiative. (2022). Autosomal dominant and sporadic late onset Alzheimer disease share a common in vivo pathophysiology. Brain: A Journal of Neurology: awac181. Advance online publication. https://doi.org/10.1093/brain/awac181 Google Scholar
Petersen, R.C., Caracciolo, B., Brayne, C., Gauthier, S., Jelic, V., & Fratiglioni, L. (2014). Mild cognitive impairment: A concept in evolution. Journal of Internal Medicine, 275(3), 214228.CrossRefGoogle ScholarPubMed
Pineault, J., Jolicoeur, P., Grimault, S., Bermudez, P., Brambati, S.M., Lacombe, J., Villalpando, N., Manuel, J., Marie-Jeanne, K., & Joubert, S. (2018). Functional changes in the cortical semantic network in amnestic mild cognitive impairment. Neuropsychology, 32(4), 417435. https://doi.org/10.1037/neu0000466 CrossRefGoogle ScholarPubMed
Quiroz, Y.T., Sperling, R.A., Norton, D.J., Baena, A., Arboleda-Velasquez, J.F., Cosio, D., Schultz, A., Lapoint, M., Guzman-Velez, E., Miller, J.B., Kim, L.A., Chen, K., Tariot, P.N., Lopera, F., Reiman, E.M., & Johnson, K.A. (2018). Association between Amyloid and Tau accumulation in young adults with autosomal dominant Alzheimer disease. JAMA Neurology, 75(5), 548556. https://doi.org/10.1001/jamaneurol.2017.4907 CrossRefGoogle ScholarPubMed
Quiroz, Y.T., Zetterberg, H., Reiman, E.M., Chen, Y., Su, Y., Fox-Fuller, J.T., Garcia, G., Villegas, A., Sepulveda-Falla, D., Villada, M., Arboleda-Velasquez, J.F., Guzmán-Vélez, E., Vila-Castelar, C., Gordon, B.A., Schultz, S.A., Protas, H.D., Ghisays, V., Giraldo, M., Tirado, V., … & Lopera, F. (2020). Plasma neurofilament light chain in the presenilin 1 E280A autosomal dominant Alzheimer’s disease kindred: a cross-sectional and longitudinal cohort study. The Lancet. Neurology, 19(6), 513521. https://doi.org/10.1016/S1474-4422(20)30137-X.CrossRefGoogle Scholar
Ryman, D.C., Acosta-Baena, N., Aisen, P.S., Bird, T., Danek, A., Fox, N.C., Goate, A., Frommelt, P., Ghetti, B., Langbaum, J.B.S., Lopera, F., Martins, R., Masters, C.L., Mayeux, R.P., McDade, E., Moreno, S., Reiman, E.M., Ringman, J.M., Salloway, S., … & Bateman, R.J. for the Dominantly Inherited Alzheimer Network. (2014). Symptom onset in autosomal dominant Alzheimer disease: A systematic review and meta-analysis. Neurology, 83(3), 253260. https://doi.org/10.1212/WNL.0000000000000596 CrossRefGoogle ScholarPubMed
Sclan, S.G., & Reisberg, B. (1992). Functional assessment staging (FAST) in Alzheimer’s disease: Reliability, validity, and ordinality. International Psychogeriatrics, 4(Suppl 1), 5569. https://doi.org/10.1017/s1041610292001157 CrossRefGoogle ScholarPubMed
Sperling, R.A., Aisen, P.S., Beckett, L.A., Bennett, D.A., Craft, S., Fagan, A.M., Iwatsubo, T., Jack, C.R. Jr., Kaye, J., Montine, T.J., Park, D.C., Reiman, E.M., Rowe, C.C., Siemers, E., Stern, Y., Yaffe, K., Carrillo, M.C., Thies, B., Morrison-Bogorad, M., … & Phelps, C. H. (2011). Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 7(3), 280292. https://doi.org/10.1016/j.jalz.2011.03.003.CrossRefGoogle ScholarPubMed
Tessaro, B., Hermes-Pereira, A., Schilling, L.P., Fonseca, R.P., Kochhann, R., & Hübner, L.C. (2020). Verbal fluency in Alzheimer’s disease and mild cognitive impairment in individuals with low educational level and its relationship with reading and writing habits. Dementia & Neuropsychologia, 14, 300307.CrossRefGoogle ScholarPubMed
Troyer, A.K. (2000). Normative data for clustering and switching on verbal fluency tasks. Journal of Clinical and Experimental Neuropsychology, 22(3), 370378. https://doi.org/10.1076/1380-3395(200006)22:3;1-V;FT370 CrossRefGoogle ScholarPubMed
Troyer, A.K., Moscovitch, M., & Winocur, G. (1997). Clustering and switching as two components of verbal fluency: Evidence from younger and older healthy adults. Neuropsychology, 11(1), 138146. https://doi.org/10.1037//0894-4105.11.1.138 CrossRefGoogle ScholarPubMed
Troyer, A.K., Moscovitch, M., Winocur, G., Leach, L., & Freedman, M. (1998). Clustering and switching on verbal fluency tests in Alzheimer’s and Parkinson’s disease. Journal of the International Neuropsychological Society: JINS, 4(2), 137143. https://doi.org/10.1017/s1355617798001374 CrossRefGoogle ScholarPubMed
Weakley, A., & Schmitter-Edgecombe, M. (2014). Analysis of verbal fluency ability in Alzheimer’s disease: The role of clustering, switching and semantic proximities. Archives of Clinical Neuropsychology: The Official Journal of the National Academy of Neuropsychologists, 29(3), 256268. https://doi.org/10.1093/arclin/acu010 CrossRefGoogle ScholarPubMed