Skip to main content Accessibility help

Alzheimer Disease Cerebrospinal Fluid Biomarkers Moderate Baseline Differences and Predict Longitudinal Change in Attentional Control and Episodic Memory Composites in the Adult Children Study

  • Andrew J. Aschenbrenner (a1), David A. Balota (a1) (a2), Anne M. Fagan (a2) (a3), Janet M. Duchek (a1), Tammie L.S. Benzinger (a3) (a4) (a5) and John C. Morris (a2) (a3)...


Cognitive measures that are sensitive to biological markers of Alzheimer disease (AD) pathology are needed to (a) facilitate preclinical staging, (b) identify individuals who are at the highest risk for developing clinical symptoms, and (c) serve as endpoints for evaluating the efficacy of interventions. The present study assesses the utility of two cognitive composite scores of attentional control and episodic memory as markers for preclinical AD pathology in a group of cognitively normal older adults (N=238), as part of the Adult Children Study. All participants were given a baseline cognitive assessment and follow-up assessments every 3 years over an 8-year period, as well as a lumbar puncture within 2 years of the initial assessment to collect cerebrospinal fluid (CSF) and amyloid tracer Pittsburgh compound-B scan for amyloid imaging. Results indicated that attentional control was correlated with levels of Aβ42 at the initial assessment whereas episodic memory was not. Longitudinally, individuals with high CSF tau exhibited a decline in both attention and episodic memory over the course of the study. These results indicate that measures of attentional control and episodic memory can be used to evaluate cognitive decline in preclinical AD and provide support that CSF tau may be a key mechanism driving longitudinal cognitive change. (JINS, 2015, 21, 573–583)


Corresponding author

Correspondence and reprint requests to: Andrew Aschenbrenner, Washington University, Department of Psychology, St. Louis, MO, 63130. E-mail:


Hide All
Aizenstein, H.J., Nebes, R.D., Saxton, J.A., Price, J.C., Mathis, C.A., Tsopelas, N.D., & Klunk, W.E. (2008). Frequent amyloid deposition without significant cognitive impairment among the elderly. Archives of Neurology, 65, 15091517. doi:10.1001/archneur.65.11.1509
Aschenbrenner, A.J., Balota, D.A., Tse, C.S., Fagan, A.M., Holtzman, D.M., Benzinger, T.L., &Morris, J.C. (2015). Alzheimer disease biomarkers, attentional control, and semantic memory retrieval: Synergistic and mediational effects of biomarkers on a sensitive cognitive measure in non-demented older adults. Neuropsychology, 29, 368381.
Balota, D.A., & Duchek, J.M. (2015). Attention, variability, and biomarkers in Alzheimer’s disease. In Remembering: Attributions, processes, and control in human memory (pp. 285303). New York: Psychology Press.
Balota, D.A., & Faust, M. (2001). Attention in Dementia of the Alzheimers Type. In F. Boller & S. Cappa (Eds.), Handbook of Neuropsychology (2nd ed., Vol. 6, pp. 51–80). New York: Elsevier Science.
Balota, D.A., Tse, C.S., Hutchison, K.A., Spieler, D.H., Duchek, J.M., & Morris, J.C. (2010). Predicting conversion to dementia of the Alzheimer’s type in a healthy control sample: The power of errors in Stroop color naming. Psychology and Aging, 25, 208218. doi:10.1037/a0017474
Banich, M.T., Milham, M.P., Atchley, R., Cohen, N.J., Webb, A., Wszalek, T., & Magin, R. (2000). fMri studies of Stroop tasks reveal unique roles of anterior and posterior brain systems in attentional selection. Journal of Cognitive Neuroscience, 12, 9881000.
Bateman, R.J., Xiong, C., Benzinger, T.L., Fagan, A.M., Goate, A., Fox, N.C., &Morris, J.C. (2012). Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. New England Journal of Medicine, 367, 795804. doi:10.1056/NEJMoa1202753
Bates, D., Maechler, M., Bolker, B., & Walker, S. (2014). lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1–7. Retrieved from
Bertens, D., Knol, D.L., Scheltens, P., & Visser, P.J. (2015). Temporal evolution of biomarkers and cognitive markers in the asymptomatic, MCI, and dementia stage of Alzheimer’s disease. Alzheimer’s & Dementia, 11, 511522. doi:10.1016/j.jalz.2014.05.1754
Buckner, R.L., Snyder, A.Z., Shannon, B.J., LaRossa, G., Sachs, R., Fotenos, A.F., & Mintun, M.A. (2005). Molecular, structural, and functional characterization of Alzheimer’s disease: Evidence for a relationship between default activity, amyloid, and memory. Journal of Neuroscience, 25(34), 77097717. doi:10.1523/JNEUROSCI.2177-05.2005
Castel, A.D., Balota, D.A., Hutchison, K.A., Logan, J.M., & Yap, M.J. (2007). Spatial attention and response control in healthy younger and older adults and individuals with Alzheimer’s disease: Evidence for disproportionate selection impairments in the Simon task. Neuropsychology, 21, 170182. doi:10.1037/0894-4105.21.2.170
Craig-Schapiro, R., Perrin, R.J., Roe, C.M., Xiong, C., Carter, D., Cairns, N.J., & Holtzman, D.M. (2010). YKL-40: A novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biological Psychiatry, 68(10), 903912. doi:10.1016/j.biopsych.2010.08.025
Craik, F.I.M., & Lockhart, R.S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11, 671684.
Davison, A.C., & Hinkley, D.V. (1997). Bootstrap methods and their application. New York: Cambridge University Press.
Doraiswamy, P.M., Sperling, R.A., Coleman, R.E., Johnson, K.A., Reiman, E.M., Davis, M.D., & Pontecorvo, M.J. (2012). Amyloid-assessed by florbetapir F 18 PET and 18-month cognitive decline: A multicenter study. Neurology, 79, 16361644. doi:10.1212/WNL.0b013e3182661f74
Duchek, J.M., Balota, D.A., Thomas, J.B., Snyder, A.Z., Rich, P., Benzinger, T.L., & Ances, B.M. (2013). Relationship between Stroop performance and resting state functional connectivity in cognitively normal older adults. Neuropsychology, 27(5), 516528. doi:10.1037/a0033402
Duchek, J.M., Balota, D.A., Tse, C.S., Holtzman, D.M., Fagan, A.M., & Goate, A.M. (2009). The utility of intraindividual variability in selective attention tasks as an early marker for Alzheimer’s disease. Neuropsychology, 23(6), 746758. doi:10.1037/a0016583
Ellis, K.A., Lim, Y.Y., Harrington, K., Ames, D., Bush, A.I., Darby, D., & Maruff, P. (2013). Decline in cognitive function over 18 months in healthy older adults with high amyloid-β. Journal of Alzheimer’s Disease, 34(4), 861871.
Ewers, M., Insel, P., Jagust, W.J., Shaw, L., Trojanowski, J.Q., Aisen, P., & Weiner, M.W. (2012). CSF biomarker and PIB-PET-derived beta-amyloid signature predicts metabolic, gray matter, and cognitive changes in nondemented subjects. Cerebral Cortex, 22(9), 19932004. doi:10.1093/cercor/bhr271
Fagan, A.M., Mintun, M.A., Shah, A.R., Aldea, P., Roe, C.M., Mach, R.H., & Holtzman, D.M. (2009). Cerebrospinal fluid tau and ptau181 increase with cortical amyloid deposition in cognitively normal individuals: Implications for future clinical trials of Alzheimer’s disease. EMBO Molecular Medicine, 1, 371380. doi:10.1002/emmm.200900048
Fagan, A.M., Roe, C.M., Xiong, C., Mintun, M.A., Morris, J.C., & Holtzman, D.M. (2007). Cerebrospinal fluid tau/beta-amyloid42 ratio as a prediction of cognitive decline in nondemented older adults. Archives of Neurology, 64, 343349. doi:10.1001/archneur.64.3.noc60123
Fischl, B. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14, 1122.
Galvin, J.E., Powlishta, K.K., Wilkins, K., McKeel, D.W., Xiong, C., Grant, E., & Morris, J.C. (2005). Predictors of preclinical Alzheimer disease and dementia: A clinicopathologic study. Archives of Neurology, 62, 758765.
Glodzik, L., de Santi, S., Tsui, W.H., Mosconi, L., Zinkowski, R., Pirraglia, E., & de Leon, M.J. (2011). Phosphorylated tau 231, memory decline and medial temporal atrophy in normal elders. Neurobiology of Aging, 32(12), 21312141. doi:10.1016/j.neurobiolaging.2009.12.026
Gordon, B.A., Zacks, J.M., Blazey, T., Benzinger, T.L., Morris, J.C., Fagan, A.M., & Balota, D.A. (2015). Task-evoked fMRI changes in attention networks are associated with preclinical Alzheimer’s disease biomarkers. Neurobiology of Aging, 36, 17711779. doi:10.1016/j.neurobiolaging.2015.01.019
Grober, E., Buschke, H., Crystal, H., Bang, S., & Dresner, R. (1988). Screening for demenita by memory testing. Neurology, 38, 900903.
Hedden, T., Oh, H., Younger, A.P., & Patel, T.A. (2013). Meta-analysis of amyloid-cognition relations in cognitively normal older adults. Neurology, 80, 13411348.
Kane, M.J., & Engle, R.W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & Review, 9(4), 637671. doi:10.3758/BF03196323
Klunk, W.E., Engler, H., Nordberg, A., Wang, Y., Blomqvist, G., Holt, D.P., & Långström, B. (2004). Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Annals of Neurology, 55(3), 306319. doi:10.1002/ana.20009
Kuznetsova, A., Brockhoff, P.B., & Christensen, R.H.B. (2014). lmerT-est: Tests for random and fixed effects for linear mixed effects models (lmer objects of lme4 package). R Package Version 2.0 –11. Retrieved from
Landau, S.M., Mintun, M.A., Joshi, A.D., Koeppe, R.A., Petersen, R.C., Aisen, P.S.,& Jagust, W.J. (2012). Amyloid deposition, hypometabolism, and longitudinal cognitive decline. Annals of Neurology, 72(4), 578586. doi:10.1002/ana.23650
Li, G., Millard, S.P., Peskind, E.R., Zhang, J., Yu, C.E., Leverenz, J.B., & Montine, T.J. (2014). Cross-sectional and longitudinal relationships between cerebrospinal fluid biomarkers and cognitive function in people without cognitive impairment from across the adult life span. JAMA Neurology, 71(6), 742751. doi:10.1001/jamaneurol.2014.445
Li, G., Sokal, I., Quinn, J.F., Leverenz, J.B., Brodey, M., Schellenberg, G.D., & Montine, T.J. (2007). CSF tau/Aβ42 ratio for increased risk of mild cognitive impairment A follow-up study. Neurology, 69, 631639.
Lim, Y.Y., Pietrzak, R.H., Ellis, K.A., Jaeger, J., Harrington, K., Ashwood, T., & Maruff, P. (2013). Rapid decline in episodic memory in healthy older adults with high amyloid-β. Journal of Alzheimer’s Disease, 33, 675679. doi:10.3233/JAD-2012-121516
Lo, R.Y., Hubbard, A.E., Shaw, L.M., Trojanowski, J.Q., Peterson, R.C., Aisen, P.S., & Jagust, W.J. (2011). Longitudinal change of biomarkers in cognitive decline. Archives of Neurology, 68(10), 12571266. doi:10.1001/archneurol.2011.123
Mattsson, N., Andreasson, U., Persson, S., Arai, H., Batish, S.D., Bernardini, S., & Blennow, K. (2011). The Alzheimer’s Association external quality control program for cerebrospinal fluid biomarkers. Alzheimer’s & Dementia, 7, 386395e6. doi:10.1016/j.jalz.2011.05.2243
McCabe, D.P., Roediger, H.L., McDaniel, M.A., Balota, D.A., & Hambrick, D.Z. (2010). The relationship between working memory capacity and executive functioning: Evidence for a common executive attention construct. Neuropsychology, 24(2), 222243. doi:10.1037/a0017619
Mintun, M.A., LaRossa, G.N., Sheline, Y.I., Dence, C.S., Lee, S.Y., Mach, R.H., & Morris, J.C. (2006). [11C]PIB in a nondemented population: Potential antecedent marker of Alzheimer disease. Neurology, 67, 446452. doi:10.1212/01.wnl.0000228230.26044.a4
Morris, J.C. (1993). The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology, 43, 24122414.
Morris, J.C., McKeel, D.W., Storandt, M., Rubin, E.H., Price, J.L., Grant, E.A., & Berg, L. (1991). Very mild Alzheimer’s disease: Informant-based clinical, psychometric, and pathologic distinction from normal aging. Neurology, 41, 469478.
Mungas, D., Tractenberg, R., Schneider, J.A., Crane, P.K., & Bennett, D.A. (2014). A 2-process model for neuropathology of Alzheimer’s disease. Neurobiology of Aging, 35, 301308. doi:10.1016/j.neurobiolaging.2013.08.007
Nebes, R.D., Snitz, B.E., Cohen, A.D., Aizenstein, H.J., Saxton, J.A., Halligan, E.M., & Klunk, W.E. (2013). Cognitive aging in persons with minimal amyloid-β and white matter hyperintensities. Neuropsychologia, 51, 22022209. doi:10.1016/j.neuropsychologia.2013.07.017
Perry, R.J., & Hodges, J.R. (1999). Attention and executive deficits in Alzheimer’s disease: A critical review. Brain: A Journal of Neurology, 122, 383404.
Price, J.L., McKeel, D.W., Buckles, V.D., Roe, C.M., Xiong, C., Grundman, M., & Morris, J.C. (2009). Neuropathology of nondemented aging: Presumptive evidence for preclinical Alzheimer disease. Neurobiology of Aging, 30, 10261036. doi:10.1016/j.neurobiolaging.2009.04.002
Resnick, S.M., Sojkova, J., Zhou, Y., An, Y., Ye, W., Holt, D.P., & Wong, D.F. (2010). Longitudinal cognitive decline is associated with fibrillar amyloid-beta measured by [11C]PiB. Neurology, 74, 807815.
Rodrigue, K.M., Kennedy, K.M., Devous, M.D., Rieck, J.R., Hebrank, A.C., Diaz-Arrasita, R., & Park, D.C. (2012). B-Amyloid burden in healthy aging: Regional distribution and cognitive consequences. Neurology, 78, 387395.
Roe, C.M., Fagan, A.M., Grant, E.A., Hassenstab, J., Moulder, K.L., Dreyfus, D.M., & Morris, J.C. (2013). Amyloid imaging and CSF biomarkers in predicting cognitive impairment up to 7.5 years later. Neurology, 80, 17841791.
Rolstad, S., Berg, A.I., Bjerke, M., Johansson, B., Zetterberg, H., & Wallin, A. (2013). Cerebrospinal fluid biomarkers mirror rate of cognitive decline. Journal of Alzheimer’s Disease, 34, 949956. doi:10.3233/JAD-121960
Simon, J.R. (1969). Reactions toward the source of stimulation. Journal of Experimental Psychology, 81, 174176.
Snijders, T., & Bosker, R. (1999). Multilevel Analysis: An introduction to basic and advanced multilevel modeling. Thousand Oaks, CA: SAGE Publications.
Sperling, R.A., Aisen, P.S., Beckett, L.A., Bennett, D.A., Craft, S., Fagan, A.M., & Phelps, C.H. (2011). Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7, 280292. doi:10.1016/j.jalz.2011.03.003
Sperling, R.A., Johnson, K.A., Doraiswamy, P.M., Reiman, E.M., Fleisher, A.S., Sabbagh, M.N., & Pontecorvo, M.J. (2013). Amyloid deposition detected with florbetapir F 18 (18F-AV-45) is related to lower episodic memory performance in clinically normal older individuals. Neurobiology of Aging, 34, 822831. doi:10.1016/j.neurobiolaging.2012.06.014
Spieler, D.H., Balota, D.A., & Faust, M.E. (1996). Stroop performance in healthy younger and older adults and in individuals with dementia of the Alzheimer’s type. Journal of Experimental Psychology: Human Perception and Performance, 22, 461479.
Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47, 20152028. doi:10.1016/j.neuropsychologia.2009.03.004
Stomrud, E., Hansson, O., Zetterberg, H., Blennow, K., Minthon, L., & Londos, E. (2010). Correlation of longitudinal cerebrospinal fluid biomarkers with cognitive decline in healthy older adults. Archives of Neurology, 67(2), 217223.
Storandt, M., Head, D., Fagan, A.M., Holtzman, D.M., & Morris, J.C. (2012). Toward a multifactorial model of Alzheimer disease. Neurobiology of Aging, 33, 22622271. doi:10.1016/j.neurobiolaging.2011.11.029
Storandt, M., & Hill, R.D. (1989). Very mild senile dementia of the Alzheimer type II: Psychometric test performance. Archives of Neurology, 46, 383386.
Storandt, M., Mintun, M.A., Head, D., & Morris, J.C. (2009). Cognitive decline and brain volume loss as signatures of cerebral amyloid-β peptide deposition identified with Pittsburgh compound B. Archives of Neurology, 66, 14761481. doi:10.1001/archneurol.2009.272
Stroop, J.R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643662. doi:10.1037/ h0054651
Su, Y., D’Angelo, G.M., Vlassenko, A.G., Zhou, G., Snyder, A.Z., Marcus, D.S., & Benzinger, T.L. (2013). Quantitative analysis of PiB-PET with Freesurfer ROIs. PLoS One, 8, e73377.
Tse, C.S., Balota, D.A., Yap, M.J., Duchek, J.M., & McCabe, D.P. (2010). Effects of healthy aging and early stage dementia of the Alzheimer’s type on components of response time distributions in three attention tasks. Neuropsychology, 24, 300315. doi:10.1037/a0018274
Twamley, E.W., Ropacki, S.A., & Bondi, M.W. (2006). Neuropsychological and neuroimaging changes in preclinical Alzheimer’s disease. Journal of the International Neuropsychological Society, 12, 707735.
Vanderhasselt, M.A., De Raedt, R., & Baeken, C. (2009). Dorsolateral prefrontal cortex and Stroop performance: Tackling the lateralization. Psychonomic Bulletin & Review, 16(3), 609612. doi:10.3758/PBR.16.3.609
Vemuri, P., Wiste, H.J., Weigand, S.D., Shaw, L.M., Trojanowski, J.Q., Weiner, M.W., & Jack, C.R. (2009). MRI and CSF biomarkers in normal, MCI, and AD subjects Diagnostic discrimination and cognitive correlations. Neurology, 73, 287293. doi:10.1212/WNL.0b013e3181af79e5
Villemagne, V.L., Pike, K.E., Chételat, G., Ellis, K.A., Mulligan, R.S., Bourgeat, P., & Rowe, C.C. (2011). Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Annals of Neurology, 69(1), 181192. doi:10.1002/ana.22248
Vos, S.J., Xiong, C., Visser, P.J., Jasielec, M.S., Hassenstab, J., Grant, E.A., & Fagan, A.M. (2013). Preclinical Alzheimer’s disease and its outcome: A longitudinal cohort study. The Lancet Neurology, 12, 957965.
Wechsler, D. (1987). Weschler Memory Scale: Administration and Scoring manual (3rd ed.). San Antonio, TX: Psychological Corporation.
Wechsler, D., & Stone, C.P. (1973). Manual: Wechsler Memory Scale. New York: Psychological Corporation.
Xiong, C., Roe, C.M., Buckles, V., Fagan, A., Holtzman, D., Balota, D., & Morris, J.C. (2011). Role of family history for Alzheimer biomarker abnormalities in the Adult Children Study. Archives of Neurology, 68(10), 13131319.


Related content

Powered by UNSILO

Alzheimer Disease Cerebrospinal Fluid Biomarkers Moderate Baseline Differences and Predict Longitudinal Change in Attentional Control and Episodic Memory Composites in the Adult Children Study

  • Andrew J. Aschenbrenner (a1), David A. Balota (a1) (a2), Anne M. Fagan (a2) (a3), Janet M. Duchek (a1), Tammie L.S. Benzinger (a3) (a4) (a5) and John C. Morris (a2) (a3)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.