Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-19T11:21:02.333Z Has data issue: false hasContentIssue false

Alerting, orienting, and executive attention in older adults

Published online by Cambridge University Press:  27 July 2010

JEANNETTE R. MAHONEY
Affiliation:
Department of Neurology, Albert Einstein College of Medicine, Bronx, New York Department of Psychology, Ferkauf Graduate School of Psychology, Albert Einstein College of Medicine, Bronx, New York
JOE VERGHESE
Affiliation:
Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
YELENA GOLDIN
Affiliation:
Department of Psychology, Ferkauf Graduate School of Psychology, Albert Einstein College of Medicine, Bronx, New York
RICHARD LIPTON
Affiliation:
Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
ROEE HOLTZER*
Affiliation:
Department of Neurology, Albert Einstein College of Medicine, Bronx, New York Department of Psychology, Ferkauf Graduate School of Psychology, Albert Einstein College of Medicine, Bronx, New York
*
*Correspondence and reprint requests to: Roee Holtzer, Ph.D., Albert Einstein College of Medicine, Yeshiva University, 1165 Morris Park Avenue, Room 306, Bronx, New York 10461. E-mail: roee.holtzer@einstein.yu.edu

Abstract

The Attention Network Test (ANT) assesses alerting, orienting, and executive attention. The current study was designed to achieve three main objectives. First, we determined the reliability, effects, and interactions of attention networks in a relatively large cohort of non-demented older adults (n = 184). Second, in the context of this aged cohort, we examined the effect of chronological age on attention networks. Third, the effect of blood pressure on ANT performance was evaluated. Results revealed high-reliability for the ANT as a whole, and for specific cue and flanker types. We found significant main effects for the three attention networks as well as diminished alerting but enhanced orienting effects during conflict resolution trials. Furthermore, increased chronological age and low blood pressure were both associated with significantly worse performance on the executive attention network. These findings are consistent with executive function decline in older adults and the plausible effect of reduced blood flow to the frontal lobes on individual differences in attention demanding tasks. (JINS, 2010, 16, 877–889.)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albert, M.S. (1981). Geriatric neuropsychology. Journal of Consulting and Clinical Psychology, 49, 835850.CrossRefGoogle ScholarPubMed
Albert, M., & Kaplan, E. (1980). Organic implications of neuropsychological deficits in the elderly. In Poon, L.W., Fozard, J.L., Cermark, L.S., Arenberg, S., & Thompson, L.W. (Eds.), New directions in memory and aging (pp. 403429). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Birns, J., & Kalra, L. (2009). Cognitive function and hypertension. Journal of Human Hypertension, 23, 8696.CrossRefGoogle ScholarPubMed
Blessed, G., Tomlinson, B.E., & Roth, M. (1968). The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. British Journal of Psychiatry, 114, 797811.CrossRefGoogle ScholarPubMed
Bush, G., Luu, P., & Posner, M.I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4, 215222.CrossRefGoogle ScholarPubMed
Cabeza, R. (2001). Cognitive neuroscience of aging: Contributions of functional neuroimaging. Scandinavian Journal of Psychology, 42, 277286.CrossRefGoogle ScholarPubMed
Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging, 17, 85100.CrossRefGoogle ScholarPubMed
Cabeza, R., Anderson, N.D., Locantore, J.K., & McIntosh, A.R. (2002). Aging gracefully: Compensatory brain activity in high-performing older adults. Neuroimage, 17, 13941402.CrossRefGoogle ScholarPubMed
Callejas, A., Lupianez, J., & Tudela, P. (2004). The three attentional networks: On their independence and interactions. Brain and Cognition, 54, 225227.CrossRefGoogle ScholarPubMed
Chobanian, A.V., Bakris, G.L., Black, H.R., Cushman, W.C., Green, L.A., Izzo, J.L. Jr., et al. . (2003). Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension, 42, 12061252.CrossRefGoogle ScholarPubMed
Corbetta, M., & Shulman, G.L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews. Neuroscience, 3, 201215.CrossRefGoogle ScholarPubMed
Coull, J.T., Frith, C.D., Frackowiak, R.S., & Grasby, P.M. (1996). A fronto-parietal network for rapid visual information processing: A PET study of sustained attention and working memory. Neuropsychologia, 34, 10851095.CrossRefGoogle Scholar
Craik, F., & Byrd, M. (1982). Aging and cognitive deficits: The role of attentional resources. In Ceaik, F.I.M., & Trehub, S. (Eds.), Aging and cognitive processes (pp. 191211). New York, NY: Plenum.CrossRefGoogle Scholar
Danckert, J., Maruff, P., Crowe, S., & Currie, J. (1998). Inhibitory processes in covert orienting in patients with Alzheimer’s disease. Neuropsychology, 12, 225241.CrossRefGoogle ScholarPubMed
Davidson, M.C., & Marrocco, R.T. (2000). Local infusion of scopolamine into intraparietal cortex slows covert orienting in rhesus monkeys Journal of Neurophysiology, 83, 15361549.CrossRefGoogle ScholarPubMed
Dempster, F.N. (1992). The rise and fall of the inhibitory mechanism: Toward a unified theory of cognitive development and aging. Developmental Review, 12, 4575.CrossRefGoogle Scholar
Duschek, S., Matthias, E., & Schandry, R. (2005). Essential hypotension is accompanied by deficits in attention and working memory. Behavioral Medicine, 30, 149158.CrossRefGoogle ScholarPubMed
Duschek, S., & Schandry, R. 2007. Reduced brain perfusion and cognitive performance due to constitutional hypotension. Clinical Autonomic Research, 17, 6976.CrossRefGoogle ScholarPubMed
Elias, P.K., Elias, M.F., D’Agostino, R.B., Cupples, L.A., Wilson, P.W., Silbershatz, H., et al. . (1997). NIDDM and blood pressure as risk factors for poor cognitive performance. The Framingham Study. Diabetes Care, 20, 13881395.CrossRefGoogle ScholarPubMed
Elias, P.K., Elias, M.F., Robbins, M.A., & Budge, M.M. (2004). Blood pressure-related cognitive decline: Does age make a difference? Hypertension, 44, 631636.CrossRefGoogle Scholar
Fan, J., Fossella, J., Sommer, T., Wu, Y., & Posner, M.I. (2003). Mapping the genetic variation of executive attention onto brain activity. Proceedings of the National Academy of Sciences of the United States of America, 100, 74067411.CrossRefGoogle ScholarPubMed
Fan, J., Gu, X., Guise, K.G., Liu, X., Fossella, J., Wang, H., et al. . (2009). Testing the behavioral interaction and integration of attentional networks. Brain and Cognition, 70, 209220.CrossRefGoogle ScholarPubMed
Fan, J., Kolster, R., Ghajar, J., Suh, M., Knight, R.T., Sarkar, R., et al. . (2007). Response anticipation and response conflict: An event-related potential and functional magnetic resonance imaging study. Journal of Neuroscience, 27, 22722282.CrossRefGoogle ScholarPubMed
Fan, J., McCandliss, B.D., Fossella, J., Flombaum, J.I., & Posner, M.I. (2005). The activation of attentional networks. Neuroimage, 26, 471479.CrossRefGoogle ScholarPubMed
Fan, J., McCandliss, B.D., Sommer, T., Raz, A., & Posner, M.I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14, 340347.CrossRefGoogle ScholarPubMed
Farkas, E., & Luiten, P.G. (2001). Cerebral microvascular pathology in aging and Alzheimer’s disease. Progress in Neurobiology, 64, 575611.CrossRefGoogle ScholarPubMed
Federal Interagency Forum on Aging-Related Statistics. Older Americans 2008: Key Indicators of Well-Being. (2008). Federal Interagency Forum on Aging-Related Statistics, National Center for Health Statistics. Retrieved from http://www.agingstats.gov/ (accessed September 10, 2009).Google Scholar
Fernandez-Duque, D., & Black, S.E. (2006). Attentional networks in normal aging and Alzheimer’s disease. Neuropsychology, 20, 133143.CrossRefGoogle ScholarPubMed
Folk, C.L., & Hoyer, W.J. (1992). Aging and shifts of visual spatial attention. Psychology and Aging, 7, 453465.CrossRefGoogle ScholarPubMed
Fossella, J., Sommer, T., Fan, J., Wu, Y., Swanson, J.M., Pfaff, D.W., et al. . (2002). Assessing the molecular genetics of attention networks. BMC Neuroscience, 3, 14.CrossRefGoogle ScholarPubMed
Franklin, S.S., Larson, M.G., Khan, S.A., Wong, N.D., Leip, E.P., Kannel, W.B., et al. . (2001). Does the relation of blood pressure to coronary heart disease risk change with aging? The Framingham Heart Study. Circulation, 103, 12451249.CrossRefGoogle ScholarPubMed
Fuld, P. (1978). Psychological testing in the differential diagnosis of the dementias. In Terry, R.D., Katzman, R., Bick, K.L., & Sisodia, S.S. (Eds.), Alzheimer’s disease: Senile dementia and related disorders (Vol. 7, pp. 185193). New York, NY: Raven Press.Google Scholar
Fuster, J.M. (1989). The prefrontal cortex (2nd ed.). New York, NY: Raven Press.Google Scholar
Glynn, R.J., Beckett, L.A., Hebert, L.E., Morris, M.C., Scherr, P.A., & Evans, D.A. (1999). Current and remote blood pressure and cognitive decline. The Journal of the American Medical Association, 281, 438445.CrossRefGoogle ScholarPubMed
Grober, E., Dickson, D., Sliwinski, M.J., Buschke, H., Katz, M., Crystal, H., et al. . (1999). Memory and mental status correlates of modified Braak staging. Neurobiology of Aging, 20, 573579.CrossRefGoogle ScholarPubMed
Guo, Z., Fratiglioni, L., Winblad, B., & Viitanen, M. (1997). Blood pressure and performance on the Mini-Mental State Examination in the very old. Cross-sectional and longitudinal data from the Kungsholmen Project. American Journal of Epidemiology, 145, 11061113.CrossRefGoogle ScholarPubMed
Guo, Z., Viitanen, M., Fratiglioni, L., & Winblad, B. (1996). Low blood pressure and dementia in elderly people: The Kungsholmen project. British Medical Journal, 312, 805808.CrossRefGoogle ScholarPubMed
Gur, R.C., Gur, R.E., Obrist, W.D., Skolnick, B.E., & Reivich, M. (1987). Age and regional cerebral blood flow at rest and during cognitive activity. Archives of General Psychiatry, 44, 617621.CrossRefGoogle ScholarPubMed
Hakala, S.M., & Tilvis, R.S. (1998). Determinants and significance of declining blood pressure in old age. A prospective birth cohort study. European Heart Journal, 19, 18721878.CrossRefGoogle ScholarPubMed
Hannesdottir, K., Nitkunan, A., Charlton, R.A., Barrick, T.R., MacGregor, G.A., & Markus, H.S. (2009). Cognitive impairment and white matter damage in hypertension: A pilot study. Acta Neurologica Scandinavica, 119, 261268.CrossRefGoogle ScholarPubMed
Hartley, A.A., & Kieley, J.M. (1995). Adult age differences of inhibition of return of visual attention. Psychology and Aging, 10, 670683.CrossRefGoogle ScholarPubMed
Hartley, A.A., Kieley, J.M., & Slabach, E.H. (1990). Age differences and similarities in the effects of cues and prompts. Journal of Experimental Psychology. Human Perception and Performance, 16, 523537.CrossRefGoogle ScholarPubMed
Hedge, A., & Marsh, N.W. (1975). The effect of irrelevant spatial correspondences on two- choice response-time. Acta Psychologica, 39, 427439.CrossRefGoogle ScholarPubMed
Hestad, K., Kveberg, B., & Engedal, K. (2005). Low blood pressure is a better predictor of cognitive deficits than the apolipoprotein e4 allele in the oldest old. Acta Neurologica Scandinavica, 111, 323328.CrossRefGoogle Scholar
Holtzer, R., Friedman, R., Lipton, R.B., Katz, M., Xue, X., & Verghese, J. (2007). The relationship between specific cognitive functions and falls in aging. Neuropsychology, 21:540548.CrossRefGoogle ScholarPubMed
Holtzer, R., Goldin, Y., Zimmerman, M., Katz, M., Buschke, H., & Lipton, R.B. (2008). Robust norms for selected neuropsychological tests in older adults, Archives of Clinical Neuropsychology, 23, 531541.CrossRefGoogle ScholarPubMed
Holtzer, R., Verghese, J., Wang, C., Hall, C.B., & Lipton, R.B. (2008). Within-person across- neuropsychological test variability and incident dementia. Journal of the American Medical Association, 300, 823830.CrossRefGoogle ScholarPubMed
Holtzer, R., Verghese, J., Xue, X., & Lipton, R.B. (2006). Cognitive processes related to gait velocity: Results from the Einstein Aging Study. Neuropsychology, 20, 215223.CrossRefGoogle ScholarPubMed
Jennings, J.M., Dagenbach, D., Engle, C.M., & Funke, L.J. (2007). Age-related changes and the attention network task: An examination of alerting, orienting, and executive function. Neuropsychology, Development, and cognition. Section B, Aging, Neuropsychology and Cognition, 14, 353369.CrossRefGoogle ScholarPubMed
Johnson, K.A., Robertson, I.H., Barry, E., Mulligan, A., Daibhis, A., Daly, M., et al. . (2008). Impaired conflict resolution and alerting in children with ADHD: Evidence from the Attention Network Task (ANT). Journal of Child Psychology and Psychiatry, 49, 13391347.CrossRefGoogle ScholarPubMed
Kawamura, J., Terayama, Y., Takashima, S., Obara, K., Pavol, M.A., Meyer, J.S., et al. . (1993). Leuko-araiosis and cerebral perfusion in normal aging. Experimental Aging Research, 19, 225240.CrossRefGoogle ScholarPubMed
Konrad, K., Neufang, S., Thiel, C.M., Specht, K., Hanisch, C., Fan, J., et al. . (2005). Development of attentional networks: An fMRI study with children and adults. Neuroimage, 28, 429439.CrossRefGoogle ScholarPubMed
Kramer, A.F., Humphrey, D.G., Larish, J.F., Logan, G.D., & Strayer, D.L. (1994). Aging and inhibition: Beyond a unitary view of inhibitory processing in attention. Psychology and Aging, 9, 491512.CrossRefGoogle ScholarPubMed
Kramer, A.F., & Kray, J. (2006). Aging and Attention. In Bialystok, E., & Craik, F.I.M. (Eds.), Lifespan cognition: Mechanisms of change (pp. 5769). New York, NY: Oxford University Press.CrossRefGoogle Scholar
Launer, L.J., Masaki, K., Petrovitch, H., Foley, D., & Havlik, R.J. (1995). The association between midlife blood pressure levels and late-life cognitive function. The Honolulu-Asia Aging Study. Journal of the American Medical Association, 274, 18461851.CrossRefGoogle ScholarPubMed
Leskin, L.P., & White, P.M. (2007). Attentional networks reveal executive function deficits in posttraumatic stress disorder. Neuropsychology, 21, 275284.CrossRefGoogle ScholarPubMed
Libow, L.S. (1977). Senile dementia and psuedosenility: Clinical diagnosis. In Eisdorfer, C., & Friedel, R.O. (Eds.), Cognitive and emotional disturbance in the elderly. Chicago, IL: Year Book Medical Publishing.Google Scholar
Lincourt, A.E., Folk, C.L., & Hoyer, W.J. (1997). Effects of aging on voluntary and involuntary shifts of attention. Aging, Neuropsychology, and Cognition, 4, 290303.CrossRefGoogle ScholarPubMed
Lipton, R.B., Katz, M.J., Kuslansky, G., Sliwinski, M.J., Stewart, W.F., Verghese, J., et al. . (2003). Screening for dementia by telephone using the memory impairment screen. Journal of the American Geriatrics Society, 51, 13821390.CrossRefGoogle ScholarPubMed
MacDonald, A.W. III, Cohen, J.D., Stenger, V.A., & Carter, C.S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288, 18351838.CrossRefGoogle ScholarPubMed
Madden, D.J., & Gottlob, L.R. (1997). Adult age differences in strategic and dynamic components of focusing visual attention. Aging, Neuropsychology, and Cognition, 4, 185210.CrossRefGoogle Scholar
Marrocco, R.T., Witte, E.A., & Davidson, M.C. (1994). Arousal systems. Current Opinion in Neurobiology, 4, 166170.CrossRefGoogle ScholarPubMed
Masur, D.M., Sliwinski, M., Lipton, R.B., Blau, A.D., & Crystal, H.A. (1994). Neuropsychological prediction of dementia and the absence of dementia in healthy elderly persons. Neurology, 44, 14271432.CrossRefGoogle ScholarPubMed
Melamed, E., Lavy, S., Bentin, S., Cooper, G., & Rinot, Y. (1980). Reduction in regional cerebral blood flow during normal aging in man. Stroke, 11, 3135.CrossRefGoogle ScholarPubMed
Meyer, J.S., Rauch, G., Rauch, R.A., & Haque, A. (2000). Risk factors for cerebral hypoperfusion, mild cognitive impairment, and dementia. Neurobiology of Aging, 21, 161169.CrossRefGoogle ScholarPubMed
Miyake, A., Friedman, N.P., Emerson, M.J., Witzki, A.H., Howerter, A., & Wager, T.D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49100.CrossRefGoogle ScholarPubMed
Molander, L., Lovheim, H., Norman, T., Nordstrom, P., & Gustafson, Y. (2008). Lower systolic blood pressure is associated with greater mortality in people aged 85 and older. Journal of the American Geriatrics Society, 56, 18531859.CrossRefGoogle ScholarPubMed
Morris, M.C., Scherr, P.A., Hebert, L.E., Bennett, D.A., Wilson, R.S., Glynn, R.J., et al. . (2000). The cross-sectional association between blood pressure and Alzheimer’s disease in a biracial community population of older persons. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 55, M130M136.CrossRefGoogle Scholar
Morris, M.C., Scherr, P.A., Hebert, L.E., Bennett, D.A., Wilson, R.S., Glynn, R.J., & Evans, D.A. (2002). Association between blood pressure and cognitive function in a biracial community population of older persons. Neuroepidemiology, 21, 123130.CrossRefGoogle Scholar
Nebes, R.D., & Brady, C.B. (1993). Phasic and tonic alertness in Alzheimer’s disease. Cortex, 29, 7790.CrossRefGoogle ScholarPubMed
Nestor, P.G., Kubicki, M., Spencer, K.M., Niznikiewicz, M., McCarley, R.W., & Shenton, M.E. (2007). Attentional networks and cingulum bundle in chronic schizophrenia. Schizophrenia Research, 90, 308315.CrossRefGoogle ScholarPubMed
Nilsson, S.E., Read, S., Berg, S., Johansson, B., Melander, A., & Lindblad, U. (2007). Low systolic blood pressure is associated with impaired cognitive function in the oldest old: Longitudinal observations in a population-based sample 80 years and older. Aging Clinical and Experimental Research, 19, 4147.CrossRefGoogle Scholar
Niogi, S., Mukherjee, P., Ghajar, J., & McCandliss, B.D. (2010). Individual differences in distinct components of attention are linked to anatomical variations in distinct white matter tracts. Frontiers in Neuroanatomy, 4, 112.Google ScholarPubMed
Nordahl, C.W., Ranganatha, C., Yonelinas, A.P., DeCarli, C., Reed, B.R., & Jagust, W.D. (2005). Different mechanisms of episodic memory failure in mild cognitive impairment. Neuropsychologia, 43, 16881697.CrossRefGoogle ScholarPubMed
Oosterman, J.M., de Vries, K., & Scherder, E.J. (2007). Executive ability in relation to blood pressure in residents of homes for the elderly. Archives of Clinical Neuropsychology, 22, 731738.CrossRefGoogle ScholarPubMed
Pantoni, L., & Garcia, J.H. (1997). Pathogenesis of leukoaraiosis: A review. Stroke, 28, 652659.CrossRefGoogle ScholarPubMed
Posner, M.I. (1994). Attention: The mechanisms of consciousness. Proceedings of the National Academy of Sciences of the United States of America, 91, 73987403.CrossRefGoogle ScholarPubMed
Posner, M.I., & Petersen, S.E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 2542.CrossRefGoogle ScholarPubMed
Posner, M.I., & Rothbart, M.K. (2007). Research on attention networks as a model for the integration of psychological science. Annual Review of Psychology, 58, 123.CrossRefGoogle Scholar
Posner, M.I., Sheese, B.E., Odludas, Y., & Tang, Y. (2006). Analyzing and shaping human attentional networks. Neural Networks, 19, 14221429.CrossRefGoogle ScholarPubMed
Pugh, K.G., & Lipsitz, L.A. (2002). The microvascular frontal-subcortical syndrome of aging. Neurobiology of Aging, 23, 421431.CrossRefGoogle ScholarPubMed
Qiu, C., Winblad, B., & Fratiglioni, L. (2005). The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurology, 4, 487499.CrossRefGoogle ScholarPubMed
Räihä, I., Tarvonen, S., Kurki, T., Rajala, T., & Sourander, L. (1993). Relationship between vascular factors and white matter low attenuation of the brain. Acta Neurologica Scandinavica, 87, 286289.CrossRefGoogle ScholarPubMed
Raz, A., & Buhle, J. (2006). Typologies of attentional networks. Nature Reviews. Neuroscience, 7, 367379.CrossRefGoogle ScholarPubMed
Raz, N., Gunning, F.M., Head, D., Dupuis, J.H., McQuain, J., Briggs, S.D., et al. . (1997). Selective aging of the human cerebral cortex observed in vivo: Differential vulnerability of the prefrontal gray matter. Cerebral Cortex, 7, 268282.CrossRefGoogle ScholarPubMed
Raz, N., Rodrigue, K.M., Kennedy, K.M., & Acker, J.D. (2007). Vascular health and longitudinal changes in brain and cognition in middle-aged and older adults. Neuropsychology, 21, 149157.CrossRefGoogle ScholarPubMed
Rueda, M.R., Fan, J., McCandliss, B.D., Halparin, J.D., Gruber, D.B., Lercari, L.P., et al. . (2004). Development of attentional networks in childhood. Neuropsychologia, 42, 10291040.CrossRefGoogle ScholarPubMed
Salthouse, T.A. (1985). Speed of behavior and its implication for cognition. In Birren, J.E., & Schaie, K.W. (Eds.), Handbook of the psychology of aging (2nd ed., pp. 400426). Amsterdam: North-Holland.Google Scholar
Schillerstrom, J.E., Horton, M.S., & Royall, D.R. (2005). The impact of medical illness on executive function. Psychosomatics, 46, 508516.CrossRefGoogle ScholarPubMed
Sever, P. (2009). Is systolic blood pressure all that matters? Yes. British Medical Journal, 339, b2665.CrossRefGoogle ScholarPubMed
Simon, J.R., Sly, P.E., & Vilapakkam, S. (1981). Effect of compatibility of S-R mapping on reactions toward the stimulus source. Acta Psychologica, 47, 6381.CrossRefGoogle ScholarPubMed
Sliwinski, M., Buschke, H., Stewart, W.F., Masur, D., & Lipton, R.B. (1997). The effect of dementia risk factors on comparative and diagnostic selective reminding norms. Journal of the International Neuropsychological Society, 3, 317326.CrossRefGoogle ScholarPubMed
Sorond, F.A., Schnyer, D.M., Serrador, J.M., Milberg, W.P., & Lipsitz, L.A. (2008). Cerebral blood flow regulation during cognitive tasks: Effects of healthy aging. Cortex, 44, 179184.CrossRefGoogle ScholarPubMed
Stern, Y., Habeck, C., Moeller, J., Scarmeas, N., Anderson, K.E., Hilton, H.J., et al. . (2005). Brain networks associated with cognitive reserve in healthy young and old adults. Cerebral Cortex, 15, 394402.CrossRefGoogle ScholarPubMed
Tales, A., Muir, J.L., Bayer, A., Jones, R., & Snowden, R.J. (2002). Phasic visual alertness in Alzheimer’s disease and ageing. Neuroreport, 13, 25572560.CrossRefGoogle ScholarPubMed
Verghese, J., Katz, M.J., Derby, C.A., Kuslansky, G., Hall, C.B., & Lipton, R.B. (2004). Reliability and validity of a telephone-based mobility assessment questionnaire. Age and Ageing, 33, 628632.CrossRefGoogle ScholarPubMed
Verghese, J., Lipton, R.B., Hall, C.B., Kuslansky, G., & Katz, M.J. (2003). Low blood pressure and the risk of dementia in very old individuals. Neurology, 61, 16671672.CrossRefGoogle ScholarPubMed
Verghese, J., Wang, C., Lipton, R.B., Holtzer, R., & Xue, X. (2007). Quantitative gait dysfunction and risk of cognitive decline and dementia. Journal of Neurology, Neurosurgery, and Psychiatry, 78, 929935.CrossRefGoogle ScholarPubMed
Verhaeghen, P., & Cerella, J. (2002). Aging, executive control, and attention: A review of meta-analyses. Neuroscience and Biobehavioral Reviews, 26, 849857.CrossRefGoogle ScholarPubMed
Waldstein, S.R., Brown, J.R., Maier, K.J., & Katzel, L.I. (2005). Diagnosis of hypertension and high blood pressure levels negatively affect cognitive function in older adults. Annals of Behavioral Medicine, 29, 174180.CrossRefGoogle ScholarPubMed
Waldstein, S.R., Giggey, P.P., Thayer, J.F., & Zonderman, A.B. (2005). Nonlinear relations of blood pressure to cognitive function: The Baltimore Longitudinal Study of Aging. Hypertension, 45, 374379.CrossRefGoogle ScholarPubMed
Waldstein, S.R., & Katzel, L.I. (2005). Stress-induced blood pressure reactivity and cognitive function. Neurology, 64, 17461749.CrossRefGoogle ScholarPubMed
West, R.L. (1996). An application of prefrontal cortex function theory to cognitive aging. Psychological Bulletin, 120, 272292.CrossRefGoogle ScholarPubMed
Willis, L., Yeo, R.A., Thomas, P., & Garry, P.J. (1988). Differential declines in cognitive function with aging: The possible role of health status. Developmental Neuropsychology, 4, 2328.CrossRefGoogle Scholar
Zeef, E.J., Sonke, C.J., Kok, A., Buiten, M.M., & Kenemans, J.L. (1996). Perceptual factors affecting age-related differences in focused attention: Performance and psychophysiological analyses. Psychophysiology, 33, 555565.CrossRefGoogle ScholarPubMed