Skip to main content Accessibility help
×
Home

Theta-Band Functional Connectivity and Single-Trial Cognitive Control in Sports-Related Concussion: Demonstration of Proof-of-Concept for a Potential Biomarker of Concussion

Published online by Cambridge University Press:  25 January 2019


Ezra E. Smith
Affiliation:
University of Arizona, Department of Psychology, Tucson, Arizona
John J.B. Allen
Affiliation:
University of Arizona, Department of Psychology, Tucson, Arizona
Corresponding

Abstract

Objectives: This report examined theta-band neurodynamics for potential biomarkers of brain health in athletes with concussion. Methods: Participants included college-age contact/collision athletes with (N=24) and without a history of concussion (N=16) in Study 1. Study 2 (N=10) examined changes over time in contact/collision athletes. There were two primary dependent variables: (1) theta-band phase-synchronization (e.g., functional connectivity) between medial and right-lateral electrodes; and (2) the within-subject correlation between synchronization strength on error trials and post-error reaction time (i.e., operationalization of cognitive control). Results: Head injury history was inversely related with medial-lateral connectivity. Head injury was also related to declines in a neurobehavioral measure of cognitive control (i.e., the single-trial relationship between connectivity and post-error slowing). Conclusions: Results align with a theory of connectivity-mediated cognitive control. Mild injuries undetectable by behavioral measures may still be apparent on direct measures of neural functioning. This report demonstrates that connectivity and cognitive control measures may be useful for tracking recovery from concussion. Theoretically relevant neuroscientific findings in healthy adults may have applications in patient populations, especially with regard to monitoring brain health. (JINS 2019, 25, 314–323)


Type
Special Section: Traumatic Brain Injury
Copyright
Copyright © The International Neuropsychological Society 2019 

Access options

Get access to the full version of this content by using one of the access options below.

References

Aron, A.R., Robbins, T.W., & Poldrack, R.A. (2014). Inhibition and the right inferior frontal cortex: one decade on. Trends in cognitive sciences, 18(4), 177185.CrossRefGoogle Scholar
Bailey, N.W., Rogasch, N.C., Hoy, K.E., Maller, J.J., Segrave, R.A., Sullivan, C.M., & Fitzgerald, P.B. (2017). Increased gamma connectivity during working memory retention following traumatic brain injury. Brain Injury, 31(3), 379389.CrossRefGoogle ScholarPubMed
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society . Series B, Statistical Methodology, 57, 289300.Google Scholar
Bigler, E.D. (2007). Anterior and middle cranial fossa in traumatic brain injury: Relevant neuroanatomy and neuropathology in the study of neuropsychological outcome. Neuropsychology, 21(5), 515.CrossRefGoogle Scholar
Broglio, S.P., Moore, R.D., & Hillman, C.H. (2011). A history of sport-related concussion on event-related brain potential correlates of cognition. International Journal of Psychophysiology, 82(1), 1623.CrossRefGoogle ScholarPubMed
Broglio, S.P., Pontifex, M.B., O'Connor, P., & Hillman, C.H. (2009). The persistent effects of concussion on neuroelectric indices of attention. Journal of neurotrauma, 26(9), 14631470.CrossRefGoogle Scholar
Buzsáki, G. (2006). Rhythms of the brain. New York: Oxford University Press.CrossRefGoogle Scholar
Buzzell, G.A., Barker, T.V., Troller-Renfree, S.V., Bernat, E.M., Bowers, M.E., MoralesS.,. S.,. & Fox, N.A. (2018). Adolescent cognitive control, theta oscillations, and social motivation. bioRxiv, doi: https://doi.org/10.1101/366831 CrossRefGoogle Scholar
Cavanagh, J.F., Cohen, M.X., & Allen, J.J. (2009). Prelude to and resolution of an error: EEG phase synchrony reveals cognitive control dynamics during action monitoring. The Journal of Neuroscience, 29(1), 98105.CrossRefGoogle ScholarPubMed
Cavanagh, J.F., & Frank, M.J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18(8), 414421.CrossRefGoogle ScholarPubMed
Cavanagh, J.F., Frank, M.J., Klein, T.J., & Allen, J.J. (2010). Frontal theta links prediction errors to behavioral adaptation in reinforcement learning. Neuroimage, 49(4), 31983209.CrossRefGoogle ScholarPubMed
Cavanagh, J.F., Meyer, A., & Hajcak, G. (2017). Error-specific cognitive control alterations in generalized anxiety disorder. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging, 2(5), 413420.CrossRefGoogle ScholarPubMed
Cavanagh, J.F., & Shackman, A.J. (2015). Frontal midline theta reflects anxiety and cognitive control: Meta-analytic evidence. Journal of Physiology, Paris, 109(1), 315.CrossRefGoogle ScholarPubMed
Cavanagh, J.F., Zambrano‐Vazquez, L., & Allen, J.J. (2012). Theta lingua franca: A common mid‐frontal substrate for action monitoring processes. Psychophysiology, 49(2), 220238.CrossRefGoogle ScholarPubMed
Cohen, M.X. (2011a). Error-related medial frontal theta activity predicts cingulate-related structural connectivity. Neuroimage, 55(3), 13731383.CrossRefGoogle Scholar
Cohen, M.X. (2011b). It’s about time. Frontiers in Human Neuroscience, 5, 2.CrossRefGoogle Scholar
Cohen, M.X. (2014). Analyzing neural time series data: Theory and practice. Cambridge: MIT Press.Google Scholar
Cohen, M.X., & Cavanagh, J.F. (2011). Single-trial regression elucidates the role of prefrontal theta oscillations in response conflict. Frontiers in Psychology, 2, 30.CrossRefGoogle ScholarPubMed
Cohen, J., & Cohen, P. (1983). Applied multiple regression/correlation analysis for the behavioral sciences. Mahwah NJ: Erlbaum.Google Scholar
Cohen, M.X., & van Gaal, S. (2013). Dynamic interactions between large-scale brain networks predict behavioral adaptation after perceptual errors. Cerebral Cortex, 23(5), 10611072.CrossRefGoogle ScholarPubMed
Cook, E.W., & Miller, G.A. (1992). Digital filtering: Background and tutorial for psychophysiologists. Psychophysiology, 29(3), 350362.CrossRefGoogle ScholarPubMed
Coronado, V.G., McGuire, L.C., Sarmiento, K., Bell, J., Lionbarger, M.R., Jones, C.D., . . . Xu, L. (2012). Trends in traumatic brain injury in the U.S. and the public health response: 1995–2009. Journal of Safety Research, 43(4), 299307.CrossRefGoogle ScholarPubMed
De Beaumont, L., Beauchemin, M., Beaulieu, C., & Jolicoeur, P. (2013). Long-term attenuated electrophysiological response to errors following multiple sports concussions. Journal of Clinical and Experimental Neuropsychology, 35(6), 596607.CrossRefGoogle ScholarPubMed
Debener, S., Ullsperger, M., Siegel, M., Fiehler, K., Von Cramon, D.Y., & Engel, A.K. (2005). Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. The Journal of Neuroscience, 25(50), 1173011737.CrossRefGoogle ScholarPubMed
Duncan, C.C., Kosmidis, M.H., & Mirsky, A.F. (2003). Event-related potential assessment of information processing after closed head injury. Psychophysiology, 40(1), 4559.CrossRefGoogle ScholarPubMed
Eierud, C., Craddock, R.C., Fletcher, S., Aulakh, M., King-Casas, B., Kuehl, D., & LaConte, S.M. (2014). Neuroimaging after mild traumatic brain injury: Review and meta-analysis. NeuroImage. Clinical, 4, 283294.CrossRefGoogle ScholarPubMed
Faul, M., Xu, L., Wald, M.M., & Coronado, V.G. (2010). Traumatic brain injury in the United States: Emergency department visits, hospitalizations, and deaths. Atlanta: Centers for Disease Control and Prevention. National Center for Injury Prevention and Control.CrossRefGoogle Scholar
Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9(10), 474480.CrossRefGoogle ScholarPubMed
Gehring, W.J., Goss, B., Coles, M.G., Meyer, D.E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4(6), 385390.CrossRefGoogle Scholar
Gehring, W.J., & Knight, R.T. (2000). Prefrontal-cingulate interactions in action monitoring. Nature Neuroscience, 3(5), 516.CrossRefGoogle ScholarPubMed
Hajcak, G., McDonald, N., & Simons, R.F. (2003). To err is autonomic: Error‐related brain potentials, ANS activity, and post‐error compensatory behavior. Psychophysiology, 40(6), 895903.CrossRefGoogle ScholarPubMed
Hill, K.E., Samuel, D.B., & Foti, D. (2016). Contextualizing individual differences in error monitoring: Links with impulsivity, negative affect, and conscientiousness. Psychophysiology, 53(8), 11431153.CrossRefGoogle ScholarPubMed
Hogan, A.M., Vargha-Khadem, F., Saunders, D.E., Kirkham, F.J., & Baldeweg, T. (2006). Impact of frontal white matter lesions on performance monitoring: ERP evidence for cortical disconnection. Brain, 129(8), 21772188.CrossRefGoogle ScholarPubMed
Iverson, G.L., Wojtowicz, M., Brooks, B.L., Maxwell, B.A., Atkins, J.E., Zafonte, R., & Berkner, P.D. (2016). High school athletes with ADHD and learning difficulties have a greater lifetime concussion history. Journal of Attention Disorders, 1, 17.Google Scholar
Karr, J.E., Areshenkoff, C.N., & Garcia-Barrera, M.A. (2014). The neuropsychological outcomes of concussion: A systematic review of meta-analyses on the cognitive sequelae of mild traumatic brain injury. Neuropsychology, 28(3), 321.CrossRefGoogle ScholarPubMed
Kerns, J.G., Cohen, J.D., MacDonald, A.W., Cho, R.Y., Stenger, V.A., & Carter, C.S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303(5660), 10231026.CrossRefGoogle ScholarPubMed
Kumar, S., Rao, S.L., Chandramouli, B.A., & Pillai, S.V. (2009). Reduction of functional brain connectivity in mild traumatic brain injury during working memory. Journal of Neurotrauma, 26(5), 665675.CrossRefGoogle ScholarPubMed
Langlois, J.A., Rutland-Brown, W., & Wald, M.M. (2006). The epidemiology and impact of traumatic brain injury: A brief overview. Journal of Head Trauma and Rehabilitation, 21(5), 375378.CrossRefGoogle ScholarPubMed
Larson, M.J., Clayson, P.E., & Farrer, T.J. (2012). Performance monitoring and cognitive control in individuals with mild traumatic brain injury. Journal of the International Neuropsychological Society, 18(2), 323.CrossRefGoogle ScholarPubMed
Larson, M.J., Farrer, T.J., & Clayson, P.E. (2011). Cognitive control in mild traumatic brain injury: Conflict monitoring and conflict adaptation. International Journal of Psychophysiology, 82(1), 6978.CrossRefGoogle ScholarPubMed
McCrory, P., Meeuwisse, W., Johnston, K., Dvorak, J., Aubry, M., Molloy, M., & Cantu, R. (2009). Consensus statement on concussion in sport 3rd International Conference on Concussion in Sport held in Zurich, November 2008. British Journal of Sports Medicine, 19(3), 185200.Google Scholar
Miller, D.R., Hayes, J.P., Lafleche, G., Salat, D.H., & Verfaellie, M. (2017). White matter abnormalities are associated with overall cognitive status in blast-related mTBI. Brain Imaging and Behavior, 11(4), 11291138.CrossRefGoogle ScholarPubMed
Mognon, A., Jovicich, J., Bruzzone, L., & Buiatti, M. (2011). ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology, 48(2), 229240.CrossRefGoogle ScholarPubMed
Moore, R.D., Pindus, D.M., Drolette, E.S., Scudder, M.R., Raine, L.B., & Hillman, C.H. (2015). The persistent influence of pediatric concussion on attention and cognitive control during flanker performance. Biological Psychology 109, 93102.CrossRefGoogle ScholarPubMed
Narayanan, N.S., Cavanagh, J.F., Frank, M.J., & Laubach, M. (2013). Common medial frontal mechanisms of adaptive control in humans and rodents. Nature. Neuroscience, 16(12), 1888.CrossRefGoogle ScholarPubMed
Nieuwenhuis, S., Ridderinkhof, K.R., Blom, J., Band, G.P., & Kok, A. (2001). Error‐related brain potentials are differentially related to awareness of response errors: Evidence from an antisaccade task. Psychophysiology, 38(5), 752760.CrossRefGoogle ScholarPubMed
Olvet, D.M., & Hajcak, G. (2009). Reliability of error-related brain activity. Brain Research, 1284, 8999.CrossRefGoogle ScholarPubMed
Olvet, D.M., Klein, D.N., & Hajcak, G. (2010). Depression symptom severity and error-related brain activity. Psychiatry Research, 179(1), 3037.CrossRefGoogle ScholarPubMed
Orr, C.A., Albaugh, M.D., Watts, R., Garavan, H., Andrews, T., Nickerson, J.P., . . . Hudziak, J.J. (2016). Neuroimaging biomarkers of a history of concussion observed in asymptomatic young athletes. Journal of Neurotrauma, 33(9), 803.CrossRefGoogle ScholarPubMed
Pang, E.W., Dunkley, B.T., Doesburg, S.M., da Costa, L., & Taylor, M.J. (2016). Reduced brain connectivity and mental flexibility in mild traumatic brain injury. Annals of Clinical and Translational Neurology, 3(2), 124131.CrossRefGoogle ScholarPubMed
Perrin, F., Pernier, J., Bertrand, O., Echallier, J.F., 1989. Spherical splines for scalp potential and current density mapping. Electroencephalography and Clinical Neurophysiology, 72, 184187.CrossRefGoogle ScholarPubMed
Perrin, F., Pernier, J., Bertrand, O., & Echallier, J.F. 1990. Corrigenda. Electroencephalography and Clinical Neurophysiology, 76, 565566.Google Scholar
Pontifex, M.B., O’Connor, P.M., Broglio, S.P., & Hillman, C.H. (2009). The association between mild traumatic brain injury history and cognitive control. Neuropsychologia, 47(14), 32103216.CrossRefGoogle ScholarPubMed
Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 21282148.CrossRefGoogle ScholarPubMed
Riesel, A., Weinberg, A., Endrass, T., Meyer, A., & Hajcak, G. (2013). The ERN is the ERN is the ERN? Convergent validity of error-related brain activity across different tasks. Biological Psychology, 93(3), 377385.CrossRefGoogle ScholarPubMed
Reches, A., Kutcher, J., Elbin, R.J., Or-Ly, H., Sadeh, B., Greer, J., . . . Kontos, A.P. (2017). Preliminary investigation of Brain Network Activation (BNA) and its clinical utility in sport-related concussion. Brain Injury, 31(2), 237246.CrossRefGoogle ScholarPubMed
Rutland-Brown, W., Langlois, J.A., Thomas, K.E., & Xi, Y.L. (2006). Incidence of traumatic brain injury in the United States, 2003. The Journal of Head Trauma Rehabilitation, 21(6), 544548.CrossRefGoogle ScholarPubMed
Smith, E.E., Reznik, S.J., Stewart, J.L., & Allen, J.J. (2017). Assessing and conceptualizing frontal EEG asymmetry: An updated primer on recording, processing, analyzing, and interpreting frontal alpha asymmetry. International Journal of Psychophysiology, 111, 98114.CrossRefGoogle ScholarPubMed
Sponheim, S.R., McGuire, K.A., Kang, S.S., Davenport, N.D., Aviyente, S., Bernat, E.M., & Lim, K.O. (2011). Evidence of disrupted functional connectivity in the brain after combat-related blast injury. Neuroimage, 54, S21S29.CrossRefGoogle ScholarPubMed
Stemmer, B., Segalowitz, S.J., Witzke, W., & Schönle, P.W. (2004). Error detection in patients with lesions to the medial prefrontal cortex: An ERP study. Neuropsychologia, 42(1), 118130.CrossRefGoogle Scholar
Tsirka, V., Simos, P.G., Vakis, A., Kanatsouli, K., Vourkas, M., Erimaki, S., . . . Micheloyannis, S. (2011). Mild traumatic brain injury: Graph-model characterization of brain networks for episodic memory. International Journal of Psychophysiology, 79(2), 8996.CrossRefGoogle ScholarPubMed
Ullsperger, M., & von Cramon, D.Y. (2006). The role of intact frontostriatal circuits in error processing. Journal of Cognitive Neuroscience, 18(4), 651664.CrossRefGoogle ScholarPubMed
Van de Vijver, I., Ridderinkhof, K.R., & Cohen, M.X. (2011). Frontal oscillatory dynamics predict feedback learning and action adjustment. Journal of Cognitive Neuroscience, 23(12), 41064121.CrossRefGoogle ScholarPubMed
Wessel, J.R., Klein, T.A., Ott, D.V., & Ullsperger, M. (2014). Lesions to the prefrontal performance-monitoring network disrupt neural processing and adaptive behaviors after both errors and novelty. Cortex, 50, 4554.CrossRefGoogle ScholarPubMed
Wessel, J.R., Ullsperger, M., Obrig, H., Villringer, A., Quinque, E., Schroeter, M.L., . . . & Klein, T.A. (2016). Neural synchrony indexes impaired motor slowing after errors and novelty following white matter damage. Neurobiology of Aging, 38, 205213.CrossRefGoogle ScholarPubMed
Wessel, J.R. (2018). An adaptive orienting theory of error processing. Psychophysiology, 55(3). doi:10.1111/psyp.13041CrossRefGoogle ScholarPubMed
Zambrano-Vazquez, L., & Allen, J.J. (2014). Differential contributions of worry, anxiety, and obsessive compulsive symptoms to ERN amplitudes in response monitoring and reinforcement learning tasks. Neuropsychologia, 61, 197209.CrossRefGoogle ScholarPubMed
Zelazo, P.D., Anderson, J.E., Richler, J., Wallner-Allen, K., Beaumont, J.L., Conway, K.P., . . . Weintraub, S. (2014). NIH Toolbox Cognition Battery (CB): Validation of executive function measures in adults. Journal of the International Neuropsychological Society, 20(6), 620629.CrossRefGoogle ScholarPubMed

Smith and Allen supplementary material

Smith and Allen supplementary material 1

[Opens in a new window]
PDF 330 KB

Altmetric attention score


Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 8
Total number of PDF views: 156 *
View data table for this chart

* Views captured on Cambridge Core between 25th January 2019 - 5th December 2020. This data will be updated every 24 hours.

Hostname: page-component-b4dcdd7-tf8mx Total loading time: 0.355 Render date: 2020-12-05T15:59:24.036Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sat Dec 05 2020 15:00:01 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Theta-Band Functional Connectivity and Single-Trial Cognitive Control in Sports-Related Concussion: Demonstration of Proof-of-Concept for a Potential Biomarker of Concussion
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Theta-Band Functional Connectivity and Single-Trial Cognitive Control in Sports-Related Concussion: Demonstration of Proof-of-Concept for a Potential Biomarker of Concussion
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Theta-Band Functional Connectivity and Single-Trial Cognitive Control in Sports-Related Concussion: Demonstration of Proof-of-Concept for a Potential Biomarker of Concussion
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *