Hostname: page-component-cd4964975-4wks4 Total loading time: 0 Render date: 2023-03-27T16:58:50.310Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Exploring the Semantic Structure of WMS-IV Verbal Paired Associates using the Hub-and-Spoke Model

Published online by Cambridge University Press:  24 May 2021

Rachel T. Furey*
Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
Stephen C. Bowden
Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia Department of Clinical Neurosciences, St. Vincent’s Hospital, Melbourne, Australia
Leonie C. Simpson
Department of Clinical Neurosciences, St. Vincent’s Hospital, Melbourne, Australia
Catherine E. Meade
Department of Clinical Neurosciences, St. Vincent’s Hospital, Melbourne, Australia
Brooke M. Davis
Department of Clinical Neurosciences, St. Vincent’s Hospital, Melbourne, Australia
Wendyl J. D’Souza
Comprehensive Epilepsy Program, St. Vincent’s Hospital, Melbourne, Australia
*Correspondence and reprint requests to: Rachel T. Furey, Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, VIC3010, Australia. E-mail:



This study aimed to identify a well-fitting and theoretically justified item-level latent factor structure for the Wechsler Memory Scales (WMS)-IV verbal paired associates (VerbalPA) subtest to facilitate the ease and accuracy of score interpretations for patients with lateralized temporal lobe epilepsy (TLE).


Archival data were used from 250 heterogeneous neurosciences patients who were administered the WMS-IV as part of a standard neuropsychological assessment. Three theoretically motivated models for the latent structure of VerbalPA were tested using confirmatory factor analysis. The first model, based on cognitive principles of semantic processing from hub-and-spoke theory, tested whether performance is related to specific semantic features of target words. The second, motivated by the Cattell–Horn–Carroll (CHC) model of cognitive abilities, investigated whether the associative properties of items influence performance. A third, Hybrid model tested whether performance is related to both semantic and associative properties of items. The best-fitting model was tested for diagnostic group effects contrasting the heterogeneous neuroscience patients with subsets of left and right TLE (n = 51, n = 26, respectively) patients.


The Hybrid model was found to have the best fit. Patients with left TLE scored significantly less well than the heterogeneous neurosciences sample on selected semantic factor scores, although the effect size was small.


Future editions of the WMS may consider implementing a semantic scoring structure for the VerbalPA to facilitate test score interpretation. Additionally, these results suggest that principles of hub-and-spoke theory may be integrated into CHC cognitive ability taxonomy.

Regular Research
Copyright © INS. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Agelink van Rentergen, J.A., de Vent, N.R., Schmand, B.A., Murre, J.M.J, Staaks, J.P.C., ANDI Consortium, & Huizenngea, H.M. (2020). The factor structure of cognitive functioning in cognitively healthy participants: A meta-analysis and meta-analysis of individual participant data. Neuropsychology Review, 30(1), 5196. doi: 10.1007/s11065-091-09423-6 CrossRefGoogle Scholar
Baxendale, S. (1998). Amnesia in temporal lobectomy patients: Historical perspective and review. Seizure, 7(1), 1524.CrossRefGoogle ScholarPubMed
Bell, B., Lin, J.J., Seidenberg, M., & Hermann, B. (2011). The neurobiology of cognitive disorders in temporal lobe epilepsy. Nature Reviews Neurology, 7(3), 154164. doi: 10.1038/nrneurol.2011.3 CrossRefGoogle ScholarPubMed
Bouman, Z., Hendriks, M.P., Schmand, B.A., Kessels, R.P., & Aldenkamp, A.P. (2016). Indicators of suboptimal performance embedded in the Wechsler Memory Scale-Fourth Edition (WMS-IV). Journal of Clinical and Experimental Neuropsychology, 38(4), 455466. doi: 10.1080/13803395.2015.1123226 CrossRefGoogle Scholar
Bowden, S.C. (2004). The role of factor analysis in construct validity: Is it a myth? Journal of the International Neuropsychological Society, 10, 10181019.CrossRefGoogle ScholarPubMed
Bowden, S.C. (2013). Theoretical convergence in assessment of cognition - Invited commentary. Journal of Psychoeducational Assessment, 31(2), 148156.CrossRefGoogle Scholar
Bowden, S.C., & Loring, D.W. (2009). The diagnostic utility of multiple-level likelihood ratios. Journal of the International Neuropsychological Society, 15(5), 769776. doi: 10.1017/S1355617709990373 CrossRefGoogle ScholarPubMed
Bowden, S.C., Saklofske, D.H., van de Vijver, F.J.R., Sudarshan, N.J., & Eysenck, S.B.G. (2016). Cross-cultural measurement invariance of the Eysenck Personality Questionnaire across 33 countries. Personality and Individual Differences, 103, 5360. CrossRefGoogle Scholar
Bowden, S.C., Simpson, L.C., & Cook, M.J. (2016). Neuropsychological Aspects of Temporal-Lobe Epilepsy: Seeking Evidence-Based Practice. In Neuropsychological Formulation (pp. 71–88). CrossRefGoogle Scholar
Brown, T.A. (2015). Confirmatory factor analysis for Applied Research. New York, NY: The Guilford Press, p. cat00006a.Google Scholar
Busch, R.M., Frazier, T.W., Iampietro, M.C., Chapin, J.S., & Kubu, C.S. (2009). Clinical utility of the Boston Naming Test in predicting ultimate side of surgery in patients with medically intractable temporal lobe epilepsy: A double cross-validation study. Epilepsia, 50(5), 12701273. doi: 10.1111/j.1528-1167.2008.01865.x CrossRefGoogle ScholarPubMed
David, A., Fleminger, S., Kopelman, M., Mellers, J., & Lovestone, S. (2009). Lishman’s Organic Psychiatry: A Textbook of Neuropsychiatry. Oxford, UK: John Wiley and Sons.CrossRefGoogle Scholar
Gow, D.W. (2012). The cortical organization of lexical knowledge: A dual lexicon model of spoken language processing. Brain and Language, 121(3), 273288.CrossRefGoogle ScholarPubMed
Holdnack, J.A., Zhou, X., Larrabee, G.J., Millis, S.R., & Salthouse, T.A. (2011). Confirmatory factor analysis of the WAIS-IV/WMS-IV. Assessment, 18(2), 178191. doi: 10.1177/1073191110393106 CrossRefGoogle ScholarPubMed
Hu, L. & Bentler, P.M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3(4), 424.CrossRefGoogle Scholar
Jewsbury, P.A. & Bowden, S.C. (2017). Construct validity has a critical role in evidence- based neuropsychological assessment. In Bowden, S.C. (Ed.), Neuropsychological Assessment in the Age of Evidence-Based Practice: Diagnostic and Treatment Evaluations (pp. 3363). New York, NY: Oxford University Press.Google Scholar
Jewsbury, P.A., Bowden, S.C., & Duff, K. (2016). The Cattell–Horn–Carroll Model of Cognition for Clinical Assessment. Journal of Psychoeducational Assessment, 35(6), 547567. doi: 10.1177/0734282916651360 CrossRefGoogle Scholar
Kamphaus, R.W., Winsor, A.P., Rowe, E.W., & Sangwon, K. (2018). A History of Intelligence Test Interpretation (Flanagan, D.P. & McDonough, E.M. Eds.), (pp. 5670). New York, NY: Guilford Publications.Google Scholar
Kim, H., Yi, S., Son, E.I., & Kim, J. (2003). Material-specific memory in temporal lobe epilepsy: Effects of seizure laterality and language dominance. Neuropsychology, 17(1), 5968. doi: 10.1037/0894-4105.17.1.59 CrossRefGoogle ScholarPubMed
Kline, R.B. (2015). Principles and Practice of Structural Equation Modeling. New York, NY: Guilford Publications.Google Scholar
Loring, D.W., Strauss, E., Hermann, B.P., Barr, W.B., Perrine, K., Trenerry, M.R. … & Bowden, S.C. (2008). Differential neuropsychological test sensitivity to left temporal lobe epilepsy. Journal of the International Neuropsychological Society, 14(3), 394400. Cambridge Core. doi: 10.1017/S1355617708080582 CrossRefGoogle ScholarPubMed
Loughman, A., Bowden, S.C., & D’Souza, W.J. (2017). Self and informant report ratings of psychopathology in genetic generalized epilepsy. Epilepsy & Behavior, 67, 1319. doi: 10.1016/j.yebeh.2016.11.014 CrossRefGoogle ScholarPubMed
Murphy, M., Smith, P.D., Wood, M., Bowden, S., O’Brien, T.J., Bulluss, K.J., & Cook, M.J. (2010). Surgery for temporal lobe epilepsy associated with mesial temporal sclerosis in the older patient: A long-term follow-up: Surgery for Temporal Lobe Epilepsy. Epilepsia, 51(6), 10241029. doi: 10.1111/j.1528-1167.2009.02430.x CrossRefGoogle ScholarPubMed
Muthén, L.K., & Muthen, B. (2017). Mplus User’s Guide: Statistical Analysis with Latent Variables, User’s Guide. Los Angeles, CA: Muthén & Muthén.Google Scholar
Ong, L.T. (2020). Temporal lobe epilepsy – Pathophysiology and mechanisms. European Neurological Review, 14(2), 6667. doi: 10.17925/ENR.2019.14.2.66 CrossRefGoogle Scholar
Patterson, K., & Lambon Ralph, M. (2016). The Hub-and-Spoke Hypothesis of Semantic Memory. In Hickok, G. & Small, S. L. (Eds.), The Neurobiology of Language (pp. 765775). Cambridge, MA: Elsevier/Academic Press.CrossRefGoogle Scholar
Petrauskas, V. (2012). The semantic-processing structure of WMS-III verbal paired associates in patients with temporal lobe epilepsy—Cross validated in a heterogenerous neuroscience sample. In (Unpublished honour’s thesis).Google Scholar
Raspall, T., Doñate, M., Boget, T., Carreño, M., Donaire, A., Agudo, R. … & Salamero, M. (2005). Neuropsychological tests with lateralizing value in patients with temporal lobe epilepsy: Reconsidering material-specific theory. Seizure, 14(8), 569576. doi: 10.1016/j.seizure.2005.09.007 CrossRefGoogle ScholarPubMed
Reyes, A., Kaestner, E., Ferguson, L., Jones, J.E., Seidenberg, M., Barr, W.B. … & McDonald, C.R. (2020). Cognitive phenotypes in temporal lobe epilepsy utilizing data- and clinically driven approaches: Moving toward a new taxonomy. Epilepsia, 61(6), 12111220. doi: 10.1111/epi.16528 CrossRefGoogle Scholar
Reynolds, M.R., Keith, T.Z., Flanagan, D.P., & Alfonso, V.C. (2013). A cross-battery, reference variable, confirmatory factor analytic investigation of the CHC taxonomy. Journal of School Psychology, 51(4), 535555. CrossRefGoogle ScholarPubMed
Saling, M.M. (2009). Verbal memory in mesial temporal lobe epilepsy: Beyond material specificity. Brain, 132(3), 570582. doi: 10.1093/brain/awp012 CrossRefGoogle ScholarPubMed
Saling, M.M., Berkovic, S.F., O’Shea, M.F., Kalnins, R.M., Darby, D.G., & Bladin, P.F. (1993). Lateralization of verbal memory and unilateral hippocampal sclerosis: Evidence of task-specific effects. Journal of Clinical and Experimental Neuropsychology, 15(4), 608618. doi: 10.1080/01688639308402582 CrossRefGoogle ScholarPubMed
Satorra, A. & Bentler, P.M. (2001). A scaled difference chi-square test statistic for moment structure analysis. Psychometrika, 66(4), 507514.CrossRefGoogle Scholar
Seidenberg, M., Hermann, B., Wyler, A., Davies, K., Dohan, F. & Leveroni, C. (1998). Neuropsychological outcome following anterior temporal lobectomy in patients with and without the syndrome of mesial temporal lobe epilepsy. Neuropsychology, 12, 303316. doi: 10.1037/0894-4105.12.2.303 CrossRefGoogle ScholarPubMed
Schneider, W.J., & McGrew, K.S. (2018). The Cattell–Horn–Carroll theory of cognitive abilities. In Contemporary Intellectual Assessment: Theories, Tests, and Issues, 4th ed. (pp. 73163). New York, NY: The Guilford Press.Google Scholar
Scorpio, K.A., Islam, R., Kim, S.M., Bind, R., Borod, J.C., Bender, H.A. (2018) Paired-associate learning. In Kreutzer, J.S., DeLuca, J., Caplan, B. (Eds.), Encyclopedia of Clinical Neuropsychology. Cham: Springer. doi: 10.1007/978-3-319-57111-9_1137 Google Scholar
Soble, J.R., Eichstaedt, K.E., Waseem, H., Mattingly, M.L., Benbadis, S.R., Bozorg, A.M. … & Schoenberg, M.R. (2014). Clinical utility of the Wechsler Memory Scale—Fourth Edition (WMS-IV) in predicting laterality of temporal lobe epilepsy among surgical candidates. Epilepsy & Behavior, 41, 232237. doi: 10.1016/j.yebeh.2014.10.014 CrossRefGoogle ScholarPubMed
Suzuki, W.A. (2008). Associative learning signals in the brain. Prog Brain Res, 169, 305320. doi: 10.1016/s0079-6123(07)00019-2 CrossRefGoogle Scholar
Umfleet, L.G., Janecek, J.K., Quasney, E., Sabsevitz, D.S, Ryan, J.J., Binder, J.R., & Swanson, S.J. (2015). Sensitivity and specificity of memory and naming tests for identifying left temporal-lobe epilepsy. Applied Neuropsychology: Adult, 22, 189196. doi: 10.1080/23279095.2014.895366 CrossRefGoogle ScholarPubMed
Visser, M., Forn, C., Lambon Ralph, M.A., Hoffman, P., Gomez Ibanez, A., Sunajuan, A. … & Avila, C. (2018). Evidence for degraded low frequency verbal concepts in left resected temporal lobe epilepsy patients. Neuropsychologia, 114, 88100. doi: 10.1016/j.neuropsychologia.2018.04.020 CrossRefGoogle ScholarPubMed
Wechsler, D. (1997). Wechsler Memory Scale Third Edition. San Antonio, TX: Psychological Corporation.Google Scholar
Wechsler, D. (2009). Wechsler Memory Scale Fourth Edition. San Antonio, TX: Psychological Corporation.Google Scholar
Wilson, C.J., Bowden, S.C., Byrne, K.L., Joshua, N., Marx, W., & Weiss, L.G. (2021). Cross-cultural invariance of cognitive ability measures. A Systematic Literature Review. Manuscript submitted for publication.Google Scholar
Widaman, K.F., & Reise, S.P. (1997). Exploring the Measurement Invariance of Psychological Instruments: Applications in the Substance abuse Domain. Washington, DC: American Psychological Association.Google Scholar
Wilde, N., Strauss, E., Chelune, G.J., Loring, D.W., Martin, R.C., Hermann, B.P. … & Hunter, M. (2001). WMS-III performance in patients with temporal lobe epilepsy: Group differences and individual classification. Journal of the International Neuropsychological Society, 7(7), 881891.CrossRefGoogle ScholarPubMed
Supplementary material: File

Furey et al. supplementary material

Tables S1-S7

Download Furey et al. supplementary material(File)
File 30 KB