Skip to main content Accessibility help
×
Home
Hostname: page-component-5bf98f6d76-pcjlm Total loading time: 0.535 Render date: 2021-04-20T23:56:53.993Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Executive Functions and Their Relation to Sleep Following Mild Traumatic Brain Injury in Preschoolers

Published online by Cambridge University Press:  16 August 2018

Catherine Landry-Roy
Affiliation:
Department of Psychology, University of Montreal, Quebec, Canada CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
Annie Bernier
Affiliation:
Department of Psychology, University of Montreal, Quebec, Canada
Jocelyn Gravel
Affiliation:
Department of Psychology, University of Montreal, Quebec, Canada CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
Miriam H. Beauchamp
Affiliation:
Department of Psychology, University of Montreal, Quebec, Canada CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
Corresponding

Abstract

Objectives: Traumatic brain injury (TBI) sustained during childhood is known to impact children’s executive functioning. However, few studies have focused specifically on executive functioning after preschool TBI. TBI has also been associated with sleep disturbances, which are known to impair executive functions in healthy children. The aim of this study was to investigate executive functions in preschoolers with mild TBI, and to determine the role of sleep in the links between TBI and executive functioning. Methods: The sample was drawn from a longitudinal study and included 167 children, aged 18 to 60 months, divided into 2 groups: children with accidental mild TBI (n=84) and typically developing children (n=83). Children were assessed 6 months post-injury on executive function measures (inhibition and cognitive flexibility) and sleep measures (actigraphy data and parental rating of sleep problems). Results: The two groups did not differ in their executive abilities. However, relative to controls, children with mild TBI and shorter nighttime sleep duration or increased sleep problems exhibited poorer executive functions. Conclusions: These results support a “double hazard” effect, whereby the combination of sleep disturbances and mild TBI results in poorer executive functions. The findings highlight the importance of assessing and monitoring the quality of sleep even after mild head injuries. Poor sleep may place children at risk for increased cognitive difficulties. (JINS, 2018, 24, 769–780)

Type
Regular Research
Copyright
Copyright © The International Neuropsychological Society 2018 

Access options

Get access to the full version of this content by using one of the access options below.

References

Acebo, C., Sadeh, A., Seifer, R., Tzischinsky, O., Wolfson, A.R., Hafer, A., &Carskadon, M.A. (1999). Estimating sleep patterns with activity monitoring in children and adolescents: How many nights are necessary for reliable measures? Sleep, 22, 95103.CrossRefGoogle ScholarPubMed
Achenbach, T.M., & Rescorla, L.A. (2001). Manual for the ASEBA school-age forms & profiles. Burlington, VT: University of Vermont, Research Center for Children Youth, & Families.Google Scholar
Alhola, P., & Polo-Kantola, P. (2007). Sleep deprivation: Impact on cognitive performance. Neuropsychiatric Disease and Treatment, 3, 553567.Google ScholarPubMed
Anderson, P. (2002). Assessment and development of executive function (EF) during childhood. Child Neuropsychology, 8, 7182.CrossRefGoogle ScholarPubMed
Anderson, V. (1998). Assessing executive functions in children: Biological, psychological, and developmental considerations. Neuropsychological Rehabilitation, 8, 319349.CrossRefGoogle Scholar
Anderson, V., & Catroppa, C. (2005). Recovery of executive skills following paediatric traumatic brain injury (TBI): A 2 year follow-up. Brain Injury, 19, 459470.CrossRefGoogle ScholarPubMed
Asikainen, I., Kaste, M., & Sarna, S. (1996). Patients with traumatic brain injury referred to a rehabilitation and re-employment programme: Social and professional outcome for 508 Finnish patients 5 or more years after injury. Brain Injury, 10, 883899.CrossRefGoogle ScholarPubMed
Astill, R.G., Van der Heijden, K.B., Van Ijzendoorn, M.H., & Van Someren, E.J. (2012). Sleep, cognition, and behavioral problems in school-age children: A century of research meta-analyzed. Psychological Bulletin, 138, 11091138.CrossRefGoogle ScholarPubMed
Beauchamp, M., Catroppa, C., Godfrey, C., Morse, S., Rosenfeld, J.V., & Anderson, V. (2011). Selective changes in executive functioning ten years after severe childhood traumatic brain injury. Developmental Neuropsychology, 36, 578595.CrossRefGoogle ScholarPubMed
Beauchamp, M.H., Landry-Roy, C., Gravel, J., Beaudoin, C., & Bernier, A. (2017). Should young children with TBI be compared with community or orthopedic control participants? Journal of Neurotrauma, 34, 25452552.CrossRefGoogle ScholarPubMed
Beck, D.M., Schaefer, C., Pang, K., & Carlson, S.M. (2011). Executive function in preschool children: Test-retest reliability. Journal of Cognition and Development, 12, 169193.CrossRefGoogle ScholarPubMed
Becker, S.P., Ramsey, R.R., & Byars, K.C. (2015). Convergent validity of the Child Behavior Checklist sleep items with validated sleep measures and sleep disorder diagnoses in children and adolescents referred to a sleep disorders center. Sleep Medicine, 16, 7986.CrossRefGoogle Scholar
Bélanger, M.E., Bernier, A., Paquet, J., Simard, V., & Carrier, J. (2013). Validating actigraphy as a measure of sleep for preschool children. Journal of Clinical Sleep Medicine, 9, 701706.Google ScholarPubMed
Bélanger, M.E., Bernier, A., Simard, V., Desrosiers, K., & Carrier, J. (2018). Sleeping toward behavioral regulation: Relations between sleep and externalizing symptoms in toddlers and preschoolers. Journal of Clinical Child & Adolescent Psychology, 47, 366373.CrossRefGoogle ScholarPubMed
Bélanger, M.E., Simard, V., Bernier, A., & Carrier, J. (2014). Investigating the convergence between actigraphy, maternal sleep diaries, and the Child Behavior Checklist as measures of sleep in toddlers. Frontiers in Psychiatry, 5, 158.Google Scholar
Bellerose, J., Bernier, A., Beaudoin, C., Gravel, J., & Beauchamp, M.H. (2015). When injury clouds understanding of others: Theory of mind after mild TBI in preschool children. Journal of the International Neuropsychological Society, 21, 483493.CrossRefGoogle ScholarPubMed
Bellerose, J., Bernier, A., Beaudoin, C., Gravel, J., & Beauchamp, M.H. (2017). Long-term brain-injury-specific effects following preschool mild TBI: A study of theory of mind. Neuropsychology, 31, 229241.CrossRefGoogle ScholarPubMed
Benington, J.H., & Frank, M.G. (2003). Cellular and molecular connections between sleep and synaptic plasticity. Progress in Neurobiology, 69, 71101.CrossRefGoogle ScholarPubMed
Bernier, A., Beauchamp, M.H., Bouvette-Turcot, A.A., Carlson, S.M., & Carrier, J. (2013). Sleep and cognition in preschool years: Specific links to executive functioning. Child Development, 84, 15421553.CrossRefGoogle ScholarPubMed
Bernier, A., Carlson, S.M., Bordeleau, S., & Carrier, J. (2010). Relations between physiological and cognitive regulatory systems: Infant sleep regulation and subsequent executive functioning. Child Development, 81, 17391752.CrossRefGoogle ScholarPubMed
Blishen, B.R., Carroll, W.K., & Moore, C. (1987). The 1981 socioeconomic index for occupations in Canada. Canadian Review of Sociology and Anthropology, 24, 465488.CrossRefGoogle Scholar
Byars, K.C., Yeomans-Maldonado, G., & Noll, J.G. (2011). Parental functioning and pediatric sleep disturbance: An examination of factors associated with parenting stress in children clinically referred for evaluation of insomnia. Sleep Medicine, 12, 898905.CrossRefGoogle ScholarPubMed
Carlson, S.M. (2005). Developmentally sensitive measures of executive function in preschool children. Developmental Neuropsychology, 28, 595616.CrossRefGoogle ScholarPubMed
Carlson, S.M., Davis, A.C., & Leach, J.G. (2005). Less is more: Executive function and symbolic representation in preschool children. Psychological Science, 16, 609616.CrossRefGoogle ScholarPubMed
Cassidy, J.D., Carroll, L.J., Peloso, P.M., Borg, J., von Holst, H., Holm, L., & Coronado, V.G. (2004). Incidence, risk factors and prevention of mild traumatic brain injury: Results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. Journal of Rehabilitation Medicine, 2860.CrossRefGoogle ScholarPubMed
Catroppa, C., Anderson, V.A., Morse, S.A., Haritou, F., & Rosenfeld, J.V. (2007). Children’s attentional skills 5 years post-TBI. Journal of Pediatric Psychology, 32, 354369.CrossRefGoogle ScholarPubMed
Collins, A., & Koechlin, E. (2012). Reasoning, learning, and creativity: Frontal lobe function and human decision-making. PLoS Biology, 10, e1001293.CrossRefGoogle ScholarPubMed
Crowe, L., Babl, F., Anderson, V., & Catroppa, C. (2009). The epidemiology of paediatric head injuries: Data from a referral centre in Victoria, Australia. Journal of Paediatrics and Child Health, 45, 346350.CrossRefGoogle ScholarPubMed
Crowe, L.M., Catroppa, C., Babl, F.E., & Anderson, V. (2013). Executive function outcomes of children with traumatic brain injury sustained before three years. Child Neuropsychology, 19, 113126.CrossRefGoogle ScholarPubMed
Dahl, R.E. (1996). The regulation of sleep and arousal: Development and psychopathology. Development and Psychopathology, 8, 327.CrossRefGoogle Scholar
Diamond, A. (2013). Executive functions. Annual Review Psycho!logy, 64, 135168.CrossRefGoogle ScholarPubMed
Durston, S., & Casey, B.J. (2006). What have we learned about cognitive development from neuroimaging? Neuropsychologia, 44, 21492157.CrossRefGoogle ScholarPubMed
Ennis, E., & Henry, M. (2004). A review of social factors in the investigation and assessment of non-accidental head injury to children. Pediatric Rehabilitation, 7, 205214.CrossRefGoogle Scholar
Escalona, S.K. (1982). Babies at double hazard: Early development of infants at biologic and social risk. Pediatrics, 70, 670676.Google ScholarPubMed
Ewing-Cobbs, L., Prasad, M.R., Landry, S.H., Kramer, L., & DeLeon, R. (2004). Executive functions following traumatic brain injury in young children: A preliminary analysis. Developmental Neuropsychology, 26, 487512.CrossRefGoogle ScholarPubMed
Friedman, N.P., Corley, R.P., Hewitt, J.K., & Wright, K.P., Jr. (2009). Individual differences in childhood sleep problems predict later cognitive executive control. Sleep, 32, 323333.CrossRefGoogle ScholarPubMed
Gagner, C., Landry-Roy, C., Bernier, A., Gravel, J., & Beauchamp, M.H. (2017). Behavioral consequences of mild traumatic brain injury in preschoolers. Psychological Medicine, Advance online publication. doi:10.1017/S0033291717003221 CrossRefGoogle Scholar
Gagner, C., Landry-Roy, C., Laine, F., & Beauchamp, M.H. (2015). Sleep-wake disturbances and fatigue after pediatric traumatic brain injury: A systematic review of the literature. Journal of Neurotrauma, 32, 15391552.CrossRefGoogle ScholarPubMed
Ganesalingam, K., Yeates, K.O., Taylor, H.G., Walz, N.C., Stancin, T., & Wade, S. (2011). Executive functions and social competence in young children 6 months following traumatic brain injury. Neuropsychology, 25, 466476.CrossRefGoogle ScholarPubMed
Garon, N., Bryson, S.E., & Smith, I.M. (2008). Executive function in preschoolers: A review using an integrative framework. Psychological Bulletin, 134, 3160.CrossRefGoogle ScholarPubMed
Goldberg, E., & Bougakov, D. (2005). Neuropsychologic assessment of frontal lobe dysfunction. The Psychiatric clinics of North America, 28, 567580. 578–579.CrossRefGoogle ScholarPubMed
Gregory, A.M., Caspi, A., Moffitt, T.E., & Poulton, R. (2009). Sleep problems in childhood predict neuropsychological functioning in adolescence. Pediatrics, 123, 11711176.CrossRefGoogle ScholarPubMed
Gruber, R., Wiebe, S., Montecalvo, L., Brunetti, B., Amsel, R., & Carrier, J. (2011). Impact of sleep restriction on neurobehavioral functioning of children with attention deficit hyperactivity disorder. Sleep, 34, 315323.CrossRefGoogle ScholarPubMed
Harrison, Y., & Horne, J.A. (2000). Sleep loss and temporal memory. Quarterly Journal of Experimental Psychology, 53, 271279.CrossRefGoogle ScholarPubMed
Hawley, C.A., Ward, A.B., Long, J., Owen, D.W., & Magnay, A.R. (2003). Prevalence of traumatic brain injury amongst children admitted to hospital in one health district: A population-based study. Injury, 34, 256260.CrossRefGoogle ScholarPubMed
Horne, J.A. (1993). Human sleep, sleep loss and behaviour. Implications for the prefrontal cortex and psychiatric disorder. The British Journal of Psychiatry, 162, 413419.CrossRefGoogle ScholarPubMed
Ingvar, D.H. (1979). “Hyperfrontal” distribution of the cerebral grey matter flow in resting wakefulness; on the functional anatomy of the conscious state. Acta Neurologica Scandinavica, 60, 1225.CrossRefGoogle ScholarPubMed
Isquith, P.K., Crawford, J.S., Espy, K.A., & Gioia, G.A. (2005). Assessment of executive function in preschool-aged children. Mental Retardation and Developmental Disabilities Reasearch Reviews, 11, 209215.CrossRefGoogle ScholarPubMed
Jacobs, R., Harvey, A.S., & Anderson, V. (2007). Executive function following focal frontal lobe lesions: Impact of timing of lesion on outcome. Cortex, 43, 792805.CrossRefGoogle Scholar
Jones, K., & Harrison, Y. (2001). Frontal lobe function, sleep loss and fragmented sleep. Sleep Medicine Reviews, 5, 463475.CrossRefGoogle ScholarPubMed
Keenan, H.T., Runyan, D.K., Marshall, S.W., Nocera, M.A., & Merten, D.F. (2004). A population-based comparison of clinical and outcome characteristics of young children with serious inflicted and noninflicted traumatic brain injury. Pediatrics, 114, 633639.CrossRefGoogle ScholarPubMed
Kjellberg, A. (1977). Sleep deprivation and some aspects of performance: II. Lapses and other attentional effects. Waking & Sleeping, 1, 145148.Google Scholar
Kochanska, G., Murray, K.T., & Harlan, E.T. (2000). Effortful control in early childhood: Continuity and change, antecedents, and implications for social development. Developmental Psychology, 36, 220232.CrossRefGoogle ScholarPubMed
Koslowsky, M., & Babkoff, H. (1992). Meta-analysis of the relationship between total sleep deprivation and performance. Chronobiology International, 9, 132136.CrossRefGoogle ScholarPubMed
Kreutzmann, J.C., Havekes, R., Abel, T., & Meerlo, P. (2015). Sleep deprivation and hippocampal vulnerability: Changes in neuronal plasticity, neurogenesis and cognitive function. Neuroscience, 309, 173190.CrossRefGoogle ScholarPubMed
Landry-Roy, C., Bernier, A., Gravel, J., & Beauchamp, M.H. (2017). Predictors of sleep outcomes following mild traumatic brain injury in preschoolers: Subjective and objective assessment of outcome. Journal of Head Trauma Rehabilitation, 32, E13E23.CrossRefGoogle Scholar
Lalonde, G., Bernier, A., Beaudoin, C., Gravel, J., & Beauchamp, M.H. (2016). Investigating social functioning after early mild TBI: The quality of parent–child interactions. Journal of Neuropsychology, 12, 122.CrossRefGoogle ScholarPubMed
Levin, H.S., & Hanten, G. (2005). Executive functions after traumatic brain injury in children. Pediatric Neurology, 33, 7993.CrossRefGoogle ScholarPubMed
Lezak, M.D. (1982). The problem of assessing executive functions. International Journal of Psychology, 17, 281297.CrossRefGoogle Scholar
Loher, S., Fatzer, S.T., & Roebers, C.M. (2014). Executive functions after pediatric mild traumatic brain injury: A prospective short-term longitudinal study. Applied Neuropsychology: Child, 3, 103114.CrossRefGoogle ScholarPubMed
Mahmood, O., Rapport, L.J., Hanks, R.A., & Fichtenberg, N.L. (2004). Neuropsychological performance and sleep disturbance following traumatic brain injury. Journal of Head Trauma Rehabilitation, 19, 378390.CrossRefGoogle ScholarPubMed
Meerlo, P., Mistlberger, R.E., Jacobs, B.L., Heller, H.C., & McGinty, D. (2009). New neurons in the adult brain: The role of sleep and consequences of sleep loss. Sleep Medicine Reviews, 13, 187194.CrossRefGoogle ScholarPubMed
Meltzer, L.J., Walsh, C.M., Traylor, J., & Westin, A.M. (2012). Direct comparison of two new actigraphs and polysomnography in children and adolescents. Sleep, 35, 159166.Google ScholarPubMed
Mittenberg, W., Wittner, M.S., & Miller, L.J. (1997). Postconcussion syndrome occurs in children. Neuropsychology, 11, 447452.CrossRefGoogle ScholarPubMed
Mustafa, A.G., & Alshboul, O.A. (2013). Pathophysiology of traumatic brain injury. Neurosciences, 18, 222234.Google ScholarPubMed
Muzur, A., Pace-Schott, E.F., & Hobson, J.A. (2002). The prefrontal cortex in sleep. Trends in Cognitive Sciences, 6, 475481.CrossRefGoogle ScholarPubMed
Nadebaum, C., Anderson, V., & Catroppa, C. (2007). Executive function outcomes following traumatic brain injury in young children: A five year follow-up. Developmental Neuropsychology, 32, 703728.CrossRefGoogle ScholarPubMed
Nelson, T.D., Nelson, J.M., Kidwell, K.M., James, T.D., & Espy, K.A. (2015). Preschool sleep problems and differential associations with specific aspects of executive control in early elementary school. Developmental Neuropsychology, 40, 167180.CrossRefGoogle ScholarPubMed
Osmond, M.H., Klassen, T.P., Wells, G.A., Correll, R., Jarvis, A., Joubert, G., & Stiell, I.G. (2010). CATCH: A clinical decision rule for the use of computed tomography in children with minor head injury. Canadian Medical Association Journal, 182, 341348.CrossRefGoogle ScholarPubMed
Owens, J.A., Spirito, A., & McGuinn, M. (2000). The Children’s Sleep Habits Questionnaire (CSHQ): Psychometric properties of a survey instrument for school-aged children. Sleep, 23, 10431051.CrossRefGoogle ScholarPubMed
Preacher, K.J., Curran, P.J., & Bauer, D.J. (2006). Computational tools for probing interactions in multiple linear regression, multilevel modeling, and latent curve analysis. Journal of Educational and Behavioral Statistics, 31, 437448.CrossRefGoogle Scholar
Randazzo, A.C., Muehlbach, M.J., Schweitzer, P.K., & Walsh, J.K. (1998). Cognitive function following acute sleep restriction in children ages 10–14. Sleep, 21, 861868.Google ScholarPubMed
Sadeh, A. (2007). Consequences of sleep loss or sleep disruption in children. Sleep Medicine Clinics, 2, 513520.CrossRefGoogle Scholar
Sadeh, A. (2015). Sleep and development: Advancing theory and research: III. Sleep assessment methods. Monographs of the Society for Research in Child Development, 80, 3348.CrossRefGoogle Scholar
Sadeh, A., Gruber, R., & Raviv, A. (2002). Sleep, neurobehavioral functioning, and behavior problems in school-age children. Child Development, 73, 405417.CrossRefGoogle ScholarPubMed
Sadeh, A., Gruber, R., & Raviv, A. (2003). The effects of sleep restriction and extension on school-age children: What a difference an hour makes. Child Development, 74, 444455.CrossRefGoogle ScholarPubMed
Sazonov, E., Sazonova, N., Schuckers, S., & Neuman, M. (2004). Activity-based sleep-wake identification in infants. Physiological Measurement, 25, 12911304.CrossRefGoogle ScholarPubMed
Scher, A., Hall, W.A., Zaidman-Zait, A., & Weinberg, J. (2010). Sleep quality, cortisol levels, and behavioral regulation in toddlers. Developmental Psychobiology, 52, 4453.Google ScholarPubMed
Shay, N., Yeates, K.O., Walz, N.C., Stancin, T., Taylor, H.G., Beebe, D.W., & Wade, S.L. (2014). Sleep problems and their relationship to cognitive and behavioral outcomes in young children with traumatic brain injury. Journal of Neurotrauma, 31, 13051312.CrossRefGoogle ScholarPubMed
Thurber, S., & Sheehan, W.P. (2012). Note on truncated T scores in discrepancy studies with the Child Behavior Checklist and Youth Self Report. Archives of Assessment Psychology, 2, 7380.Google Scholar
Tsujimoto, S. (2008). The prefrontal cortex: Functional neural development during early childhood. The Neuroscientist, 14, 345358.CrossRefGoogle ScholarPubMed
Uttl, B. (2005). Measurement of individual differences: Lessons from memory assessment in research and clinical practice. Psychological Science, 16, 460467.Google ScholarPubMed
Wang, L., Zhang, Z., McArdle, J.J., & Salthouse, T.A. (2009). Investigating ceiling effects in longitudinal data analysis. Multivariate Behavioral Research, 43, 476496.CrossRefGoogle ScholarPubMed
Ward, T.M., Gay, C., Alkon, A., Anders, T.F., & Lee, K.A. (2008). Nocturnal sleep and daytime nap behaviors in relation to salivary cortisol levels and temperament in preschool-age children attending child care. Biological Research for Nursing, 9, 244253.CrossRefGoogle ScholarPubMed
Wood, A.G., & Smith, E. (2008). Pediatric neuroimaging studies: A window to neurocognitive development of the frontal lobes. In V. Anderson, R. Jacobs & P.J. Anderson (Eds.), Executive functions and the frontal lobes (pp. 203216). New York: Taylor & Francis.Google Scholar
Zelazo, P.D. (2006). The Dimensional Change Card Sort (DCCS): A method of assessing executive function in children. Nature Protocols, 1, 297301.CrossRefGoogle ScholarPubMed

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 130
Total number of PDF views: 324 *
View data table for this chart

* Views captured on Cambridge Core between 16th August 2018 - 20th April 2021. This data will be updated every 24 hours.

Linked content

Please note a has been issued for this article.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Executive Functions and Their Relation to Sleep Following Mild Traumatic Brain Injury in Preschoolers
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Executive Functions and Their Relation to Sleep Following Mild Traumatic Brain Injury in Preschoolers
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Executive Functions and Their Relation to Sleep Following Mild Traumatic Brain Injury in Preschoolers
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *