Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-10-05T10:37:24.888Z Has data issue: false hasContentIssue false

Enhanced Manual and Oral Motor Reaction Time in Young Adult Female Fragile X Premutation Carriers

Published online by Cambridge University Press:  21 April 2011

Naomi J. Goodrich-Hunsaker*
Affiliation:
NeuroTherapeutics Research Institute, University of California Davis Medical Center, Sacramento, California
Ling M. Wong
Affiliation:
Neuroscience Graduate Group, University of California Davis, Davis, California M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, California
Yingratana McLennan
Affiliation:
M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, California
Flora Tassone
Affiliation:
M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, California Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, California
Danielle Harvey
Affiliation:
Department of Public Health Sciences, University of California Davis, Davis, California
Susan M. Rivera
Affiliation:
NeuroTherapeutics Research Institute, University of California Davis Medical Center, Sacramento, California M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, California Department of Psychology, University of California Davis, Davis, California
Tony J. Simon
Affiliation:
M.I.N.D. Institute, University of California Davis Medical Center, Sacramento, California Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, California
*
Correspondence and reprint requests to: Naomi J. Goodrich-Hunsaker, M.I.N.D. Institute, 2825 50th Street, Room 1362, Sacramento, CA 95817. E-mail: naomihunsaker@me.com

Abstract

A previous study reported preliminary results of enhanced processing of simple visual information in the form of faster reaction times, in female fragile X premutation carriers (fXPCs). In this study, we assessed manual and oral motor reaction times in 30 female fXPCs and 20 neurotypical (NT) controls. Participants completed two versions of the reaction time task; one version required a manual motor response and the other version required an oral motor response. Results revealed that the female fXPCs displayed faster reaction times for both manual and oral motor responses relative to NT controls. Molecular measures including CGG repeat length, FMR1 mRNA levels, and age were not associated with performance in either group. Given previously reported age and CGG repeat modulated performance on a magnitude comparison task in this same group of premutation carriers, results from the current study seem to suggest that female fXPCs may have spared basic psychomotor functionality. (JINS, 2011, 17, 746–750)

Type
Brief Communications
Copyright
Copyright © The International Neuropsychological Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, J.S., Adams, P.E., Nguyen, D., Brunberg, J.A., Tassone, F., Zhang, W., Hagerman, R.J. (2007). Volumetric brain changes in females with fragile X-associated tremor/ataxia syndrome (FXTAS). Neurology, 69(9), 851859. doi:10.1212/01.wnl.0000269781.10417.7bCrossRefGoogle ScholarPubMed
Bourgeois, J.A., Coffey, S.M., Rivera, S.M., Hessl, D., Gane, L.W., Tassone, F., Hagerman, R.J. (2009). A review of fragile X premutation disorders: Expanding the psychiatric perspective. The Journal of Clinical Psychiatry, 70(6), 852862. doi:10.4088/JCP.08m04476CrossRefGoogle ScholarPubMed
Bourgeois, J.A., Seritan, A.L., Casillas, E.M., Hessl, D., Schneider, A., Yang, Y., Hagerman, R.J. (2011). Lifetime prevalence of mood and anxiety disorders in fragile X premutation carriers. The Journal of Clinical Psychiatry, 72(2), 175182. doi:10.4088/JCP.09m05407bluCrossRefGoogle ScholarPubMed
Cornish, K.M., Li, L., Kogan, C.S., Jacquemont, S., Turk, J., Dalton, A., Hagerman, P.J. (2008). Age-dependent cognitive changes in carriers of the fragile X syndrome. Cortex, 44(6), 628636. doi:10.1016/j.cortex.2006.11.002CrossRefGoogle ScholarPubMed
Der, G., Deary, I.J. (2006). Age and sex differences in reaction time in adulthood: Results from the United Kingdom Health and Lifestyle Survey. Psychology and Aging, 21(1), 6273. doi:10.1037/0882-7974.21.1.62CrossRefGoogle ScholarPubMed
Garcia-Arocena, D., Hagerman, P.J. (2010). Advances in understanding the molecular basis of FXTAS. Human Molecular Genetics, 19(R1), R83R89. doi:10.1093/hmg/ddq166CrossRefGoogle ScholarPubMed
Goodrich-Hunsaker, N.J., Wong, L.M., McLennan, Y., Srivastava, S., Tassone, F., Harvey, D., Simon, T.J. (2011). Young adult female fragile X premutation carriers show age- and genetically-modulated cognitive impairments. Brain and Cognition, 75(3), 255260. doi:10.1016/j.bandc.2011.01.001CrossRefGoogle ScholarPubMed
Hagerman, P.J. (2008). The fragile X prevalence paradox. Journal of Medical Genetics, 45(8), 498499. doi:10.1136/jmg.2008.059055CrossRefGoogle ScholarPubMed
Hagerman, R.J., Leavitt, B.R., Farzin, F., Jacquemont, S., Greco, C.M., Brunberg, J.A., Hagerman, P.J. (2004). Fragile-X-associated tremor/ataxia syndrome (FXTAS) in females with the FMR1 premutation. American Journal of Human Genetics, 74(5), 10511056. doi:10.1086/420700CrossRefGoogle ScholarPubMed
Hunter, J.E., Allen, E.G., Abramowitz, A., Rusin, M., Leslie, M., Novak, G., Sherman, S.L. (2008). No evidence for a difference in neuropsychological profile among carriers and noncarriers of the FMR1 premutation in adults under the age of 50. American Journal of Human Genetics, 83(6), 692702. doi:10.1016/j.ajhg.2008.10.021CrossRefGoogle ScholarPubMed
Kolb, B., Whishaw, I.Q. (2009). Fundamentals of human neuropsychology (6th ed.). New York, NY: Worth Publishers.Google Scholar
Myers, G.F., Mazzocco, M.M.M., Maddalena, A., Reiss, A.L. (2001). No widespread psychological effect of the fragile X premutation in childhood: Evidence from a preliminary controlled study. Journal of Developmental and Behavioral Pediatrics, 22(6), 353359.CrossRefGoogle ScholarPubMed
Nettelbeck, T. (1973). Individual differences in noise and associated perceptual indices of performance. Perception, 2(1), 1121.CrossRefGoogle ScholarPubMed
Nolin, S.L., Brown, W.T., Glicksman, A., Houck, G.E. Jr., Gargano, A.D., Sullivan, A., Sherman, S.L. (2003). Expansion of the fragile X CGG repeat in females with premutation or intermediate alleles. American Journal of Human Genetics, 72(2), 454464.CrossRefGoogle ScholarPubMed
Panayiotou, G., Vrana, S.R. (2004). The role of self-focus, task difficulty, task self-relevance, and evaluation anxiety in reaction time performance. Motivation and Emotion, 28(2), 171196.CrossRefGoogle Scholar
Steyaert, J., Borghgraef, M., Fryns, J.P. (1994). Apparently enhanced visual information processing in female fragile X carriers: Preliminary findings. American Journal of Medical Genetics, 51(4), 374377. doi:10.1002/ajmg.1320510415CrossRefGoogle ScholarPubMed
Tassone, F., Pan, R., Amiri, K., Taylor, A.K., Hagerman, P.J. (2008). A rapid polymerase chain reaction-based screening method for identification of all expanded alleles of the fragile X (FMR1) gene in newborn and high-risk populations. The Journal of Molecular Diagnostics, 10(1), 4349. doi:10.2353/jmoldx.2008.070073CrossRefGoogle ScholarPubMed
Wechsler, D. (1997). WAIS-III: Wechsler adult intelligence scale. San Antonio, TX: Psychological Corporation.Google Scholar
Wechsler, D. (1999). Wechsler abbreviated scale of intelligence. San Antonio, TX: Psychological Corporation.Google Scholar
Welford, A.T. (1980). Choice reaction time: Basic concepts. In A.T. Welford & J.M.T. Brebner (Eds.), Reaction times (pp. 73128). New York, NY: Academic Press.Google Scholar