Skip to main content Accessibility help
×
Home
Hostname: page-component-558cb97cc8-kfd6t Total loading time: 0.419 Render date: 2022-10-07T08:29:20.639Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": true, "useSa": true } hasContentIssue true

Brain-derived neurotrophic factor Val66Met and neuropsychological functioning after early childhood traumatic brain injury

Published online by Cambridge University Press:  25 April 2022

Amery Treble-Barna*
Affiliation:
Department of Physical Medicine & Rehabilitation, University of Pittsburgh, School of Medicine, Pittsburgh, PA15213, USA
Shari L. Wade
Affiliation:
Division of Physical Medicine & Rehabilitation, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, College of Medicine, Cincinnati, OH45229, USA
Valentina Pilipenko
Affiliation:
Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH45229, USA
Lisa J. Martin
Affiliation:
Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, The University of Cincinnati, School of Medicine, Cincinnati, OH45229, USA
Keith Owen Yeates
Affiliation:
Department of Psychology, University of Calgary, Calgary, ABT2N 1N4, Canada
H. Gerry Taylor
Affiliation:
Abigail Wexner Research Institute at Nationwide Children’s Hospital, Department of Pediatrics, The Ohio State University, Columbus, OH43205, USA
Brad G. Kurowski
Affiliation:
Division of Pediatric Rehabilitation Medicine, Cincinnati Children’s Hospital Medical Center, Departments of Pediatrics and Neurology and Rehabilitation Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH45229, USA
*
Corresponding author: Amery Treble-Barna, email: amery.treble-barna@pitt.edu

Abstract

Objective:

The present study examined the differential effect of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism on neuropsychological functioning in children with traumatic brain injury (TBI) relative to orthopedic injury (OI).

Methods:

Participants were drawn from a prospective, longitudinal study of children who sustained a TBI (n = 69) or OI (n = 72) between 3 and 7 years of age. Children completed a battery of neuropsychological measures targeting attention, memory, and executive functions at four timepoints spanning the immediate post-acute period to 18 months post-injury. Children also completed a comparable age-appropriate battery of measures approximately 7 years post-injury. Parents rated children’s dysexecutive behaviors at all timepoints.

Results:

Longitudinal mixed models revealed a significant allele status × injury group interaction with a medium effect size for verbal fluency. Cross-sectional models at 7 years post-injury revealed non-significant but medium effect sizes for the allele status x injury group interaction for fluid reasoning and immediate and delayed verbal memory. Post hoc stratified analyses revealed a consistent pattern of poorer neuropsychological functioning in Met carriers relative to Val/Val homozygotes in the TBI group, with small effect sizes; the opposite trend or no appreciable effect was observed in the OI group.

Conclusions:

The results suggest a differential effect of the BDNF Val66Met polymorphism on verbal fluency, and possibly fluid reasoning and immediate and delayed verbal memory, in children with early TBI relative to OI. The Met allele—associated with reduced activity-dependent secretion of BDNF—may confer risk for poorer neuropsychological functioning in children with TBI.

Type
Research Article
Copyright
Copyright © INS. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, V., Catroppa, C., Morse, S., Haritou, F., & Rosenfeld, J. (2005). Functional plasticity or vulnerability after early brain injury? Pediatrics, 116, 13741382.CrossRefGoogle ScholarPubMed
Atwal, J.K., Massie, B., Miller, F.D., & Kaplan, D.R. (2000). The TrkB-Shc site signals neuronal survival and local axon growth via MEK and PI3-Kinase. Neuron, 27, 265277.CrossRefGoogle Scholar
Balkaya, M., & Cho, S. (2019). Genetics of stroke recovery: BDNF val66met polymorphism in stroke recovery and its interaction with aging. Neurobiology of Disease, 126, 3646.CrossRefGoogle ScholarPubMed
Barbey, A.K., Colom, R., Paul, E., Forbes, C., Krueger, F., Goldman, D., & Grafman, J. (2014). Preservation of general intelligence following traumatic brain injury: contributions of the Met66 brain-derived neurotrophic factor. PLoS ONE, 9, e88733.CrossRefGoogle ScholarPubMed
Breslau, N. (1995). Psychiatric sequelae of low birth weight. Epidemiologic Reviews, 17, 96106.CrossRefGoogle ScholarPubMed
Brown, D.T., Vickers, J.C., Stuart, K.E., Cechova, K., & Ward, D.D. (2020). The BDNF Val66Met polymorphism modulates resilience of neurological functioning to brain ageing and dementia: a narrative review. Brain Sciences, 10, 195.CrossRefGoogle ScholarPubMed
Chen, W., Chen, C., Xia, M., Wu, K., Chen, C., He, Q., Xue, G., Wang, W, He, Y., & Dong, Q. (2016). Interaction effects of BDNF and COMT genes on resting-state brain activity and working memory. Frontiers in Human Neuroscience, 10, 540.CrossRefGoogle ScholarPubMed
Chen, Z., Patel, P., Sant, G., Meng, C., Teng, K., Hempstead, B., & Lee, F. (2004). Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. Journal of Neuroscience, 24, 44014411.CrossRefGoogle ScholarPubMed
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Culbertson, W.C., & Zillmer, E.A. (1998). The tower of London(DX): a standardized approach to assessing executive functioning in children. Archives of Clinical Neuropsychology, 13, 285301.CrossRefGoogle Scholar
Delis, D.C., Kaplan, E., & Kramer, J.H. (2001). Delis-Kaplan Executive Function System (D-KEFS). San Antonio, TX: The Psychological Corporation;Google Scholar
Dijkhuizen, P.A., & Ghosh, A. (2005). BDNF regulates primary dendrite formation in cortical neurons via the PI3-kinase and MAP kinase signaling pathways. Journal of Neurobiology, 62, 278288.CrossRefGoogle ScholarPubMed
Donders, J., & Kim, E. (2019). Effect of cognitive reserve on children with traumatic brain injury. Journal of the International Neuropsychological Society, 25, 355361.CrossRefGoogle ScholarPubMed
Egan, M.F., Kojima, M., Callicott, J.H., Goldberg, T.E., Kolachana, B.S., Bertolino, A., Zaitsev, E., Gold, B., Goldman, D., Dean, M., Lu, B., & Weinberger, D.R. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112, 257269.CrossRefGoogle ScholarPubMed
Elliott, C. (1990). Differential Ability Scales: Introductory and Technical Handbook. San Antonio, TX: Psychological Corporation.Google Scholar
Espy, K.A. (1997). The shape school: assessing executive function in preschool children. Developmental Neuropsychology, 13, 495499.CrossRefGoogle Scholar
Ewing-Cobbs, L., Fletcher, J.M., Levin, H.S., Frances, D.J., Davidson, K., & Miner, M.E. (1997). Longitudinal neuropsychological outcome in infants and preschoolers with traumatic brain injury. Journal of the International Neuropsychological Society, 3, 581591.CrossRefGoogle ScholarPubMed
Failla, M.D., Conley, Y.P., & Wagner, A.K. (2016). Brain-derived neurotrophic factor (BDNF) in traumatic brain injury-related mortality: interrelationships between genetics and acute systemic and central nervous system BDNF profiles. Neurorehabilitation and Neural Repair, 30, 8393.CrossRefGoogle ScholarPubMed
Failla, M.D., Kumar, R.G., Peitzman, A.B., Conley, Y.P., Ferrell, R.E., & Wagner, A.K. (2015). Variation in the BDNF gene interacts with age to predict mortality in a prospective, longitudinal cohort with severe TBI. Neurorehabilitation and Neural Repair, 29, 234246.CrossRefGoogle Scholar
Finan, J.D., Udani, S.V., Patel, V., & Bailes, J.E. (2018). The Influence of the Val66Met polymorphism of brain-derived neurotrophic factor on neurological function after traumatic brain injury. Journal of Alzheimer’s Disease, 65, 10551064.CrossRefGoogle ScholarPubMed
Gabrys, R.L., Dixon, K., Holahan, M.R., & Anisman, H. (2019). Self-reported mild traumatic brain injuries in relation to rumination and depressive symptoms: moderating role of sex differences and a brain-derived neurotrophic factor gene polymorphism. Clinical Journal of Sport Medicine: Official Journal of the Canadian Academy of Sport Medicine, 29, 494499.Google Scholar
Gagner, C., Tuerk, C.B., De Beaumont, L., Bernier, A., & Beauchamp, M.H. (2020). BDNF Val66Met polymorphism and internalizing behaviors after early mild traumatic brain injury. Journal of Neurotrauma, 38, 102110.CrossRefGoogle ScholarPubMed
Ganesalingam, K., Yeates, K.O., Taylor, H.G., Walz, N.C., Stancin, T., & Wade, S. (2011). Executive functions and social competence in young children 6 months following traumatic brain injury. Neuropsychology, 25, 466476.CrossRefGoogle ScholarPubMed
Gerrard-Morris, A., Taylor, H.G., Yeates, K.O., Walz, N.C., Stancin, T., Minich, N., & Wade, S.L. (2010). Cognitive development after traumatic brain injury in young children. Journal of the International Neuropsychological Society, 16, 157168.CrossRefGoogle ScholarPubMed
Gioia, G.A., Isquith, P.K., Guy, S.C., Kenworthy, L., & Baron, I.S. (2000). Behavior rating inventory of executive function. Child Neuropsychology, 6, 235238.CrossRefGoogle Scholar
Gonzalez, L.M., Anderson, V.A., Wood, S.J., Mitchell, L.A., & Harvey, A.S. (2007). The localization and lateralization of memory deficits in children with temporal lobe epilepsy. Epilepsia, 48, 124132.CrossRefGoogle ScholarPubMed
Harkness, K.L., Strauss, J., Michael Bagby, R., Stewart, J.G., Larocque, C., Mazurka, R., Ravindran, A., Wynne-Edwards, K.E., Rector, N.A., & Kennedy, J. (2015). Interactions between childhood maltreatment and brain-derived neurotrophic factor and serotonin transporter polymorphisms on depression symptoms. Psychiatry Research, 229, 609612.CrossRefGoogle ScholarPubMed
Harrisberger, F., Spalek, K., Smieskova, R., Schmidt, A., Coynel, D., Milnik, A., Fastenrath, M., Freytag, V., Gschwind, L., Walter, A., Vogel, T., Bendfeldt, K., de Quervain, D.J.F., Papassotiropoulos, A., & Borgwardt, S. (2014). The association of the BDNF Val66Met polymorphism and the hippocampal volumes in healthy humans: a joint meta-analysis of published and new data. Neuroscience and Biobehavioral Reviews, 42, 267278.CrossRefGoogle ScholarPubMed
Hong, C., Liou, Y., & Tsai, S.J. (2011). Effects of BDNF polymorphisms on brain function and behavior in health and disease. Brain Research Bulletin, 86, 287297.CrossRefGoogle ScholarPubMed
Islam, F., Mulsant, B.H., Voineskos, A.N., & Rajji, T.K. (2017). Brain-derived neurotrophic factor expression in individuals with schizophrenia and healthy aging: testing the accelerated aging hypothesis of schizophrenia. Current Psychiatry Reports, 19, 36.CrossRefGoogle ScholarPubMed
Kambeitz, J.P., Bhattacharyya, S., Kambeitz-Ilankovic, L.M., Valli, I., Collier, D.A., & McGuire, P. (2012). Effect of BDNF val66met polymorphism on declarative memory and its neural substrate: a meta-analysis. Neuroscience and Biobehavioral Reviews, 36, 21652177.CrossRefGoogle Scholar
Kawasaki, Y., Oishi, K., Hernandez, A., Ernst, T., Wu, D., Otsuka, Y., Ceritoglu, C., & Chang, L. (2021). Brain-derived neurotrophic factor Val66Met variant on brain volumes in infants. Brain Structure and Function, 226, 919925.CrossRefGoogle ScholarPubMed
Korkman, M., Kirk, U., & Kemp, S. (1998). NEPSY: A Developmental Neuropsychological Assessment: Manual. San Antonio, TX: The Psychological Corporation.Google Scholar
Krueger, F., Pardini, M., Huey, E.D., Raymont, V., Solomon, J., Lipsky, R.H., Hodgkinson, C.A., Goldman, D., & Grafman, J. (2011). The role of the met66 brain-derived neurotrophic factor allele in the recovery of executive functioning after combat-related traumatic brain injury. Journal of Neuroscience, 31, 598606.CrossRefGoogle ScholarPubMed
Kurowski, B.G., Treble-Barna, A., Pilipenko, V., Wade, S.L., Yeates, K.O., Gerry Taylor, H., Martin, L.J., & Jegga, A.G. (2019). Genetic influences on behavioral outcomes after childhood TBI: a novel systems biology-informed approach. Frontiers in Genetics, 10, 481.CrossRefGoogle ScholarPubMed
Kurowski, B.G., Treble-Barna, A., Pitzer, A.J., Wade, S.L., Martin, L.J., Chima, R.S., & Jegga, A. (2017). Applying systems biology methodology to identify genetic factors possibly associated with recovery after traumatic brain injury. Journal of Neurotrauma, 34, 22802290.CrossRefGoogle ScholarPubMed
Lee, R., Kermani, P., Teng, K.K., & Hempstead, B.L. (2001). Regulation of cell survival by secreted proneurotrophins. Science, 294, 19451948.CrossRefGoogle ScholarPubMed
Manly, T., Robertson, I., Anderson, V., & Nimmo-Smith, I. (1999). Manual for Test of Everyday Attention in Children. London: Thames Valley Test.Google Scholar
Max, J.E., Schachar, R.J., Levin, H.S., Ewing-Cobbs, L., Chapman, S.B., Dennis, M., Saunders, A., & Landis, J. (2005). Predictors of attention-deficit/hyperactivity disorder within 6 months after pediatric traumatic brain injury. Journal of the American Academy of Child and Adolescent Psychiatry, 44, 10321040.CrossRefGoogle ScholarPubMed
McClelland, G.H., & Judd, C.M. (1993). Statistical difficulties of detecting interactions and moderator effects. Psychological Bulletin, 114, 376390.CrossRefGoogle ScholarPubMed
Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R 2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4, 133142.CrossRefGoogle Scholar
Narad, M.E., Riemersma, J., Wade, S., Smith-Paine, J., Morrison, P., Taylor, H.G., Yeates, K.O., & Kurowski, B. (2019). Impact of secondary ADHD on long-term outcomes after early childhood traumatic brain injury. Journal of Head Trauma Rehabilitation, 35, E271E279.CrossRefGoogle Scholar
Narad, M.E., Treble-Barna, A., Peugh, J., Yeates, K.O., Taylor, H.G., Stancin, T., & Wade, S.L. (2016). Recovery trajectories of executive functioning after pediatric TBI: a latent class growth modeling analysis. Journal of Head Trauma Rehabilitation, 32, 98106.CrossRefGoogle Scholar
Narad, M.E., Treble-Barna, A., Peugh, J., Yeates, K.O., Taylor, H.G., Stancin, T., & Wade, S.L. (2017). Recovery trajectories of executive functioning after pediatric TBI: a latent class growth modeling analysis. Journal of Head Trauma Rehabilitation, 32, 98106.CrossRefGoogle ScholarPubMed
Narayanan, V., Veeramuthu, V., Ahmad-Annuar, A., Ramli, N., Waran, V., Chinna, K., Bondi, M.W., Delano-Wood, L, & Ganesan, D. (2016). Missense mutation of brain derived neurotrophic factor (BDNF) alters neurocognitive performance in patients with mild traumatic brain injury: a longitudinal study. PLoS ONE, 11, e0158838.CrossRefGoogle ScholarPubMed
Nemoto, K., Ohnishi, T., Mori, T., Moriguchi, Y., Hashimoto, R., Asada, T., & Kunugi, H. (2006). The Val66Met polymorphism of the brain-derived neurotrophic factor gene affects age-related brain morphology. Neuroscience Letters, 397, 2529.CrossRefGoogle ScholarPubMed
Notaras, M., Hill, R., & Van Den Buuse, M. (2015). The BDNF gene Val66Met polymorphism as a modifier of psychiatric disorder susceptibility: progress and controversy. Molecular Psychiatry, 20, 916930.CrossRefGoogle ScholarPubMed
Olson, K., & Jacobson, K. (2015). Cross-cultural considerations in pediatric neuropsychology: a review and call to attention. Applied Neuropsychology: Child, 4, 166177.CrossRefGoogle ScholarPubMed
Park, C.H., Kim, J., Namgung, E., Lee, D.W., Kim, G.H., Kim, M., Kim, N., Kim, T.D., Kim, S., Lyoo, I.K., & Yoon, S. (2017). The BDNF val66met polymorphism affects the vulnerability of the brain structural network. Frontiers in Human Neuroscience, 11, 400.CrossRefGoogle ScholarPubMed
Patterson, S.L., Abel, T., Deuel, T.A.S., Martin, K.C., Rose, J.C., & Kandel, E.R. (1996). Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron, 16, 11371145.CrossRefGoogle ScholarPubMed
Peterson, R.E., Kuchenbaecker, K., Walters, R.K., Chen, C.Y., Popejoy, A.B., Periyasamy, S., Lam, M., Iyegbe, C., Strawbridge, R.J., Brick, L., Carey, C.E., Martin, A.R., Meyers, J.L., Su, J., Chen, J., Edwards, A.C., Kalungi, A, Koen, N., Majara, L., Schwarz, E., … Duncan, L.E. (2019). Genome-wide association studies in ancestrally diverse populations: opportunities, methods, pitfalls, and recommendations. Cell, 179, 589603.CrossRefGoogle Scholar
Pezawas, L., Verchinski, B.A., Mattay, V.S., Callicott, J.H., Kolachana, B.S., Straub, R.E., Egan, M.F., Meyer-Lindenberg, A., & Weinberger, D.R. (2004). The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. Journal of Neuroscience, 24, 1009910102.CrossRefGoogle ScholarPubMed
Rezaei, S., Asgari Mobarake, K., & Saberi, A. (2020). BDNF (rs6265) Val < Met polymorphism can buffer cognitive functions against post stroke CT/MRI pathological findings. Applied Neuropsychology: Adult, 112. https://pubmed.ncbi.nlm.nih.gov/33073590/ Google ScholarPubMed
Rezaei, S., Mobarake, K.A., Saberi, A., & Keshavarz, P. (2020). Significant destructive interaction of BDNF Val > met polymorphism with stroke severity and family history of dementia for cognitive impairments. Acta Neurologica Taiwanica, 29, 6778.http://www.ant-tnsjournal.com/PastIssues/index_PastIssues.asp?xx=2020&yy=71&zz=29&ww=3Google ScholarPubMed
Sankoh, A., Huque, M., & Dubey, S. (1997). Some comments on frequently used multiple endpoint corrections methods in clinical trials. Statistics in Medicine, 16, 25292542.3.0.CO;2-J>CrossRefGoogle Scholar
Stonnington, C.M., Velgos, S.N., Chen, Y., Syed, S., Huentelman, M., Thiyyagura, P., Lee, W., Richholt, R., Caselli, R.J., Locke, D.E.C., Lu, B., Reiman, E.M., Su, Y., & Chen, K. (2020). Interaction between BDNF Val66Met and APOE4 on biomarkers of Alzheimer’s disease and cognitive decline. Journal of Alzheimer’s Disease, 78, 721734.CrossRefGoogle ScholarPubMed
Szeszko, P.R., Lipsky, R., Mentschel, C., Robinson, D., Gunduz-Bruce, H., Sevy, S., Ashtari, M., Napolitano, B., Bilder, R.M., Kane, J.M., Goldman, D., & Malhotra, A.K. (2005). Brain-derived neurotrophic factor val66met polymorphism and volume of the hippocampal formation. Molecular Psychiatry, 10, 631636.CrossRefGoogle ScholarPubMed
Tapia-Arancibia, L., Aliaga, E., Silhol, M., & Arancibia, S. (2008). New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Research Reviews, 59, 201220.CrossRefGoogle ScholarPubMed
Taylor, H.G., Swartwout, M.D., Yeates, K.O., Walz, N.C., Stancin, T., & Wade, S.L. (2008). Traumatic brain injury in young children: postacute effects on cognitive and school readiness skills. Journal of the International Neuropsychological Society, 14, 734745.CrossRefGoogle ScholarPubMed
Teng, H.K., Teng, K.K., Lee, R., Wright, S., Tevar, S., Almeida, R.D., Kermani, P., Torkin, R., Chen, Z, Lee, F.S., Kraemer, R.T., Nykjaer, A., & Hempstead, B.L. (2005). ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. Journal of Neuroscience, 25, 54555463.CrossRefGoogle ScholarPubMed
Toh, Y.L., Ng, T., Tan, M., Tan, A., & Chan, A. (2018). Impact of brain-derived neurotrophic factor genetic polymorphism on cognition: a systematic review. Brain and Behavior, 8, e01009.CrossRefGoogle ScholarPubMed
Treble-Barna, A., Patronick, J., Uchani, S., Marousis, N.C., Zigler, C.K., Fink, E.L., Kochanek, P.M.,Conley, Y.P., & Yeates, K.O. (2020). Epigenetic effects on pediatric traumatic brain injury recovery (EETR): an observational, prospective, longitudinal concurrent cohort study protocol. Frontiers in Neurology, 11, 460.CrossRefGoogle ScholarPubMed
Treble-Barna, A., Wade, S.L., Martin, L.J., Pilipenko, V., Yeates, K.O., Taylor, H.G., & Kurowski, B.G. (2017). Influence of dopamine-related genes on neurobehavioral recovery after traumatic brain injury during early childhood. Journal of Neurotrauma, 34, 19191931.CrossRefGoogle ScholarPubMed
Treble-Barna, A., Wade, S.L., Pilipenko, V., Martin, L.J., Yeates, K.O., Taylor, H.G., & Kurowski, B.G. (2021). Brain-derived neurotrophic factor val66met and behavioral adjustment after early childhood traumatic brain injury. Journal of Neurotrauma, 39, 114121.CrossRefGoogle ScholarPubMed
Treble-Barna, A., Zang, H., Zhang, N., Taylor, H.G.G., Stancin, T., Yeates, K.O.K. O., & Wade, S.L. (2016). Observed parent behaviors as time-varying moderators of problem behaviors following traumatic brain injury in young children. Developmental Psychology, 52, 17771792.CrossRefGoogle ScholarPubMed
Treble-Barna, A., Zang, H., Zhang, N., Taylor, H.G.G., Yeates, K.O., & Wade, S.L. (2017). Long-term neuropsychological profiles and their role as mediators of adaptive functioning after traumatic brain injury in early childhood. Journal of Neurotrauma, 34, 353362.CrossRefGoogle ScholarPubMed
Tuerk, C., Gagner, C., Dégeilh, F., Bellerose, J., Lalonde, G., Landry-Roy, C., Seguin, M., de Beaumont, L., Gravel, J., Bernier, A., & Beauchamp, M.H. (2020). Quality of life 6 and 18 months after mild traumatic brain injury in early childhood: an exploratory study of the role of genetic, environmental, injury, and child factors. Brain Research, 1748, 147061.CrossRefGoogle ScholarPubMed
Ueda, I., Takemoto, K., Watanabe, K., Sugimoto, K., Ikenouchi, A., Kakeda, S., Katsuki, A., Yoshimura, R, & Korogi, Y. (2020). The brain-derived neurotrophic factor Val66Met polymorphism increases segregation of structural correlation networks in healthy adult brains. Peer Journal, 8, e9632.CrossRefGoogle ScholarPubMed
Wang, Y.J., Chen, K.Y., Kuo, L.N., Wang, W.C., Hsu, Y.W., Wong, H.S.C., Lin, C.M., Liao, K.H., Zhang, Y.F., Chiang, Y.H., & Chang, W.C. (2018). The association between BDNF Val66Met polymorphism and emotional symptoms after mild traumatic brain injury. BMC Medical Genetics, 19, 13.CrossRefGoogle ScholarPubMed
Wechsler, D. (1999). Wechsler Abbreviated Scale of Intelligence. New York, NY: Pearson.Google Scholar
Woodcock, R.W., McGrew, K.S., & Mather, N. (2001). Woodcock-Johnson III Tests of Achievement. Itasca, IL: Riverside.Google Scholar
Yang, J., Harte-Hargrove, L.C., Siao, C.J., Marinic, T., Clarke, R., Ma, Q., Jing, D., Lafrancois, J.J., Bath, K.G., Mark, W., Ballon, D., Lee, F.S., Scharfman, H.E., & Hempstead, B.L. (2014). ProBDNF negatively regulates neuronal remodeling, synaptic transmission, and synaptic plasticity in hippocampus. Cell Reports, 7, 796806.CrossRefGoogle ScholarPubMed
Yeates, K.O., Armstrong, K., Janusz, J., Taylor, H.G., Wade, S., Stancin, T., & Drotar, D. (2005). Long-term attention problems in children with traumatic brain injury. Journal of the American Academy of Child and Adolescent Psychiatry, 44, 574584.CrossRefGoogle ScholarPubMed
Yeates, K.O., Taylor, H.G., Walz, N.C., Stancin, T., & Wade, S.L. (2010). The family environment as a moderator of psychosocial outcomes following traumatic brain injury in young children. Neuropsychology, 24, 345356.CrossRefGoogle ScholarPubMed
Zeiler, F.A., McFadyen, C., Newcombe, V., Synnot, A., Donoghue, E.L., Ripatti, S., Steyerberg, E.W., Gruen, R.L., McAllister, T.W, Rosand, J., Palotie, A, Maas, A.I.R, & Menon, D. (2018). Genetic influences on patient oriented outcomes in TBI: a living systematic review of non-APOE single nucleotide polymorphisms. Journal of Neurotrauma, 35, 117.Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Brain-derived neurotrophic factor Val66Met and neuropsychological functioning after early childhood traumatic brain injury
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Brain-derived neurotrophic factor Val66Met and neuropsychological functioning after early childhood traumatic brain injury
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Brain-derived neurotrophic factor Val66Met and neuropsychological functioning after early childhood traumatic brain injury
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *