Skip to main content Accessibility help


  • Martin Bays (a1), Bradd Hart (a2) and Anand Pillay (a3)


We give an algebraic description of the structure of the analytic universal cover of a complex abelian variety which suffices to determine the structure up to isomorphism. More generally, we classify the models of theories of ‘universal covers’ of rigid divisible commutative finite Morley rank groups.



Hide All
1.Bays, M., Categoricity results for exponential maps of 1-dimensional algebraic groups & Schanuel conjectures for powers and the CIT. PhD thesis, Oxford University, 2010.
2.Benoist, F., Bouscaren, E. and Pillay, A., Semiabelian varieties over separably closed fields, maximal divisible subgroups, and exact sequences, J. Inst. Math. Jussieu 15(1) (2016), 2969.
3.Bertrand, D., Galois descent in Galois theories, in Arithmetic and Galois theories of differential equations, Sémin. Congr., Volume 23 (Soc. Math. France, Paris, 2011), 1–24.
4.Bays, M., Gavrilovich, M. and Hils, M., Some definability results in abstract Kummer theory, Int. Math. Res. Not. IMRN 2014(14) 39754000.
5.Bays, M., Hart, B., Hyttinen, T., Kesälä, M. and Kirby, J., Quasiminimal structures and excellence, Bull. Lond. Math. Soc. 46(1) (2014), 155163.
6.Buechler, S., Essential Stability Theory, Perspectives in Mathematical Logic (Springer, Berlin, 1996).10.1007/978-3-642-80177-8
7.Bays, M. and Zilber, B., Covers of multiplicative groups of algebraically closed fields of arbitrary characteristic, Bull. Lond. Math. Soc. 43(4) (2011), 689702.
8.Fuchs, L., Infinite Abelian Groups, Vol. I, Pure and Applied Mathematics, Volume 36 (Academic Press, New York, 1970).
9.Gavrilovich, M., Model theory of the universal covering spaces of complex algebraic varieties. PhD thesis, Oxford University (2006).
10.Gavrilovich, M., A remark on transitivity of Galois action on the set of uniquely divisible abelian extensions in Ext1(E (), 𝛬), K-Theory 38(2) (2008), 135152.
11.Hart, B., An exposition of OTOP, in Classification Theory (Chicago, IL, 1985), Lecture Notes in Math., Volume 1292, (Springer, Berlin, 1987), 107–126.
12.Jacquinot, O. and Ribet, K. A., Deficient points on extensions of abelian varieties by Gm, J. Number Theory 25(2) (1987), 133151.
13.Lachlan, A. H., On the number of countable models of a countable superstable theory, in Logic, Methodology, Philosophy of Science 4 (North-Holland, Amsterdam, 1973), 45–56.
14.Lang, S., Diophantine geometry, in Number Theory III, Encyclopaedia of Mathematical Sciences, Volume 60, (Springer, Berlin, 1991).
15.Larsen, M., A mordell-weil theorem for abelian varieties over fields generated by torsion points, preprint 2005, arXiv:math/0503378v1 [math.NT].
16.Lascar, D., Les groupes 𝜔-stables de rang fini, Trans. Amer. Math. Soc. 292(2) (1985), 451462.
17.Moosa, R. N., The model theory of compact complex spaces, in Logic Colloquium ’01, Lect. Notes Log., Volume 20, (Assoc. Symbol. Logic, Urbana, IL, 2005), 317–349.
18.Pillay, A. and Scanlon, T., Meromorphic groups, Trans. Amer. Math. Soc. 355(10) (2003), 38433859.
19.Ribet, K. A., Kummer theory on extensions of abelian varieties by tori, Duke Math. J. 46(4) (1979), 745761.10.1215/S0012-7094-79-04638-6
20.Serre, J.-P., Quelques propriétés des variétés abéliennes en caractéristique p, Amer. J. Math. 80 (1958), 715739.
21.Serre, J.-P., Œuvres. Collected papers. IV (Springer, Berlin, 2000), 1985–1998.
22.Shelah, S., Classification Theory and the Number of Nonisomorphic Models, Studies in Logic and the Foundations of Mathematics, Volume 92 (North-Holland Publishing Co., Amsterdam, 1990).
23.Zilber, B., Model theory, geometry and arithmetic of the universal cover of a semi-abelian variety, in Model Theory and Applications, Quad. Mat., Volume 11 (Aracne, Rome, 2002), 427–458.
24.Zilber, B., Covers of the multiplicative group of an algebraically closed field of characteristic zero, J. Lond. Math. Soc. (2) 74(1) (2006), 4158.
MathJax is a JavaScript display engine for mathematics. For more information see


MSC classification

Related content

Powered by UNSILO


  • Martin Bays (a1), Bradd Hart (a2) and Anand Pillay (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.