Skip to main content Accessibility help
×
Home

SYMMETRIC POWER CONGRUENCE IDEALS AND SELMER GROUPS

  • Haruzo Hida (a1) and Jacques Tilouine (a2)

Abstract

We prove, under some assumptions, a Greenberg type equality relating the characteristic power series of the Selmer groups over $\mathbb{Q}$ of higher symmetric powers of the Galois representation associated to a Hida family and congruence ideals associated to (different) higher symmetric powers of that Hida family. We use $R=T$ theorems and a sort of induction based on branching laws for adjoint representations. This method also applies to other Langlands transfers, like the transfer from $\text{GSp}(4)$ to $U(4)$ . In that case we obtain a corollary for abelian surfaces.

Copyright

Footnotes

Hide All

The first author is partially supported by the NSF grant: DMS 1464106. The second author is partially supported by the ANR grant: PerCoLaTor ANR-14-CE25.

Footnotes

References

Hide All
1.Arthur, J. and Clozel, L., Simple algebras, in Base Change and the Advanced Theory of the Trace Formula, Annals of Mathematics Studies (Princeton University Press, Princeton, 1989).
2.Bourbaki, N., Algèbre, Chapitre 2, (Hermann, Paris, 1962).
3.Bourbaki, N., Algèbre Commutative (Hermann, Paris, 1961–1998).
4.Clozel, L., Harris, M. and Taylor, R., Automorphy for Some -adic Lifts of Automorphic Modulo Galois Representations, Publ. Math. Inst. Hautes Études Sci. (108) (2008), 1181. With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vignéras. MR2470687.
5.Clozel, L., Représentations galoisiennes associées aux représentations automorphes autoduales de GL(n), Publ. Math. Inst. Hautes Études Sci. 73 (1991), 97145.
6.Clozel, L. and Thorne, J., Level-raising and symmetric power functoriality, I, Compos. Math. 150(5) (2014), 729748.
7.Clozel, L. and Thorne, J., Level-raising and symmetric power functoriality, II, Ann. of Math. (2) 181(1) (2015), 303359.
8.Conti, A., Grande image de Galois pour les familles $p$-adiques de formes automorphes de pente positive, thèse de l’Université Paris 13, defended July 13, 2016.
9.Conti, A., Galois level and congruence ideal for $\text{GSp}_{4}$, Compos. Math., Preprint, 65 pp, to appear.
10.Darmon, H., Diamond, F. and Taylor, R., Fermat’s last theorem, in Current Developments in Mathematics, pp. 1154 (Cambridge, MA, 1995). Int. Press, Cambridge, MA, 1994.
11.Diamond, F., The Taylor–Wiles construction and multiplicity one, Invent. Math. 128 (1997), 379391.
12.Genestier, A. and Tilouine, J., Systèmes de Taylor–Wiles pour GSp(4), in Formes automorphes II, Le cas du groupe GSp(4), Astérisque, Volume 302, pp. 177290 (Soc. Math. France, Paris, 2005).
13.Gan, W.-T. and Takeda, S., The local Langlands conjecture for GSp(4), Ann. of Math. (2) 173 (2011), 18411882.
14.Geraghty, D., Modularity lifting theorems for ordinary Galois representations, Harvard Dissertation (2010).
15.Geraghty, D., Notes on modularity lifting in the ordinary case, in $p$-adic Aspects of Modular Forms, Proc. IISER Pune conference (ed. B. Balasubramaniam, H. Hida, A. Raghuram and J. Tilouine) (World Scientific Publ., 2016).
16.Harris, M. and Taylor, R., The Geometry and Cohomology of Some Simple Shimura Varieties, Annals of Mathematics Studies, Volume 151 (Princeton University Press, Princeton, NJ, 2001). With an appendix by Vladimir G. Berkovich.
17.Harron, R. and Jorza, A., On symmetric power 𝓛-invariants of Iwahori level Hilbert modular forms, Amer. J. Math. 139 (2017), 16051647.
18.Hida, H., Geometric Modular Forms and Elliptic Curves, second edition (World Scientific, Singapore, 2011).
19.Hida, H., Modular Forms and Galois Cohomology, Cambridge Studies in Advanced Mathematics, Volume 69 (Cambridge University Press, Cambridge, England, 2000). (A list of errata posted at www.math.ucla.edu/∼hida).
20.Hida, H., p-adic Automorphic Forms, Springer Monographs in Mathematics, (Springer, 2004).
21.Hida, H., Hecke algebras for GL1 and GL2 , Sém. de Théorie des Nombres, Paris 1984–85, Progr. Math. 63 (1986), 131163.
22.Hida, H., Modules of congruence of Hecke algebras and L–functions associated with cusp forms, Amer. J. Math. 110 (1988), 323382.
23.Hida, H., Control theorems of coherent sheaves on Shimura varieties of PEL type, J. Inst. Math. Jussieu 1 (2002), 176.
24.Hida, H., Arithmetic of adjoint L-values, in $p$-adic Aspects of Modular Forms, Proc. IISER Pune Conference (ed. S B. Balasubramaniam, H. Hida, A. Raghuram and J. Tilouine) (World Scientific Publ., 2016).
25.Hida, H. and Tilouine, J., Big image of Galois representations and congruence ideals, in Arithmetic Geometry, Proc. Workshop on Serre’s Conjecture, Hausdorff Inst. Math., Bonn (ed. Dieulefait, L., Heath-Brown, D. R., Faltings, G., Manin, Y. I., Moroz, B. Z. and Wintenberger, J.-P.), pp. 217254 (Cambridge University Press, 2015).
26.Kim, H. H., Functoriality for the exterior square of GL4 and the symmetric fourth of GL2, J. Amer. Math. Soc. 16(1) (2003), 139183. With Appendix 1 by Dinakar Ramakrishnan and Appendix 2 by Kim and Peter Sarnak.
27.Kim, H. H. and Shahidi, F., Cuspidality of symmetric powers with applications, Duke Math. J. 112 (2002), 177197.
28.Kim, H. H. and Shahidi, F., Functorial products for GL2 × GL3 and the symmetric cube for GL2, Ann. of Math. (2) 155(3) (2002), 837893. With an appendix by Colin J. Bushnell and Guy Henniart.
29.Labesse, J.-P., Changement de base CM et séries discrètes, in Stabilization of the Trace Formula, Shimura Varieties, and Arithmetic Applications (ed. Harris, M.), (Int. Press, Somerville, MA, 2009).
30.Laumon, G., Fonctions zêta des variétés de Siegel de dimension trois, in Formes Automorphes (II), le cas du groupe GSp(4), Astérisque, Volume 302 (SMF, 2005).
31.Liu, Z., $p$-adic $L$ functions for ordinary families on symplectic groups, to appear.
32.Mok, C. P., Galois representations attached to automorphic forms on GL2 over a CM field, Compos. Math. 150 (2014), 523567.
33.Matsumura, H., Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, Volume 8 (Cambridge University Press, 1986).
34.Mazur, B. and Robert, L., Local Euler characteristic, Invent. Math. 9 (1970), 201234. with an Appendix by J. Tate.
35.Pilloni, V., Modularité formes de Siegel et surfaces abéliennes, J. Reine Angew. Math. 666 (2012), 3582.
36.Platonov, V. and Rapinchuk, A., Algebraic Groups and Number Theory (Academic Press, 1994).
37.Polo, P. and Tilouine, J., Bernstein–Gelfand–Gelfand complexes and cohomology of nilpotent groups over ℤp, Astérisque, Volume 282 (SMF, 2002).
38.Ribet, K., A modular construction of unramified p-extensions of ℚ(𝜇p), Invent. Math. 34 (1976), 151162.
39.Ramakrishnan, D. and Shahidi, F., Siegel modular forms of genus two attached to elliptic curves, Math. Res. Lett. 14(2) (2007), 315332.
40.Roberts, B. and Schmidt, R., Local Newforms on GSp(4), Springer LNM, Volume 1918 (Springer, 2007).
41.Tilouine, J. and Urban, E., Several variable p-adic families of Siegel-Hilbert cusp eigensystems and their Galois representations, Ann. Sci. Éc. Norm Supér (4) 32 (1999), 499574.
42.Tilouine, J., Deformations of Galois Representations and Hecke Algebras (Mehta Institute, AMS, 2002).
43.Tilouine, J., Nearly ordinary rank four Galois representations and p-adic Siegel modular forms, Compos. Math. 142 (2006), 11221156.
44.Vignéras, M.-F., On the Global Correspondence between GL(n) and a Division Algebra (Institute for Advanced Studies, Princeton, 1984).
45.Weissauer, R., Four-dimensional Galois representations, in Formes Automorphes (II), le cas du groupe GSp(4), Astérisque, Volume 302 (SMF, 2005).
46.Yoshida, H., Weil’s representations and Siegel’s modular forms, in Lectures on Harmonic Analysis on Lie Groups and Related Topics (Strasbourg, 1979), Lectures in Math., Volume 14, pp. 319341 (Kinokuniya Book Store, Tokyo, 1982).
47.Zhang, X., Special L-values and Selmer groups of Siegel modular forms of genus 2,arXiv:1811.02031.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Related content

Powered by UNSILO

SYMMETRIC POWER CONGRUENCE IDEALS AND SELMER GROUPS

  • Haruzo Hida (a1) and Jacques Tilouine (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.