Skip to main content Accessibility help
×
Home

BOUNDEDNESS OF GENERALIZED RIESZ POTENTIALS ON THE VARIABLE HARDY SPACES

  • PABLO ROCHA (a1)

Abstract

We study the boundedness from $H^{p(\cdot )}(\mathbb{R}^{n})$ into $L^{q(\cdot )}(\mathbb{R}^{n})$ of certain generalized Riesz potentials and the boundedness from $H^{p(\cdot )}(\mathbb{R}^{n})$ into $H^{q(\cdot )}(\mathbb{R}^{n})$ of the Riesz potential, both results are achieved via the finite atomic decomposition developed in Cruz-Uribe and Wang [‘Variable Hardy spaces’, Indiana University Mathematics Journal 63(2) (2014), 447–493].

Copyright

References

Hide All
[1] Capone, C., Cruz-Uribe, D. and Fiorenza, A., ‘The fractional maximal operator and fractional integrals on variable L p spaces’, Rev. Mat. Iberoam. 23(3) (2007), 743770.
[2] Cruz-Uribe, D. and Fiorenza, A., Variable Lebesgue Spaces, Foundations and Harmonic Analysis (Birkhäuser, Basel, 2013).
[3] Cruz-Uribe, D., Martell, J. M. and Pérez, C., Weights, Extrapolation and the Theory of Rubio de Francia (Birkhäuser, Basel, 2011).
[4] Cruz-Uribe, D. and Wang, D., ‘Variable Hardy spaces’, Indiana Univ. Math. J. 63(2) (2014), 447493.
[5] Diening, L., ‘Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces’, Bull. Sci. Math. 129(8) (2005), 657700.
[6] Diening, L., Harjulehto, P., Hästö, P. and Ruzicka, M., Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, 2017 (Springer, Berlin–Heidelberg, 2011).
[7] Fefferman, C. and Stein, E. M., ‘ H p spaces of several variables’, Acta Math. 129(3–4) (1972), 137193.
[8] García-Cuerva, J. and Rubio de Francia, J. L., Weighted Norm Inequalities and Related Topics (North-Holland, Amsterdam, New York, Oxford, 1985).
[9] de Guzmán, M., Real Variable Methods in Fourier Analysis (North-Holland, Amsterdam–New York–Oxford, 1981).
[10] Lerner, A. K., Ombrosi, S. and Pérez, C., ‘Sharp A1 bounds for Calderón–Zygmund operators and the relationship with a problem of Muckenhoupt and Wheeden’, Int. Math. Res. Not. IMRN 6 (2008), Article ID rnm161, 11 pp.
[11] Lu, S. Z., Four Lectures on Real H p Spaces (World Scientific Publishing Co. Pte. Ltd, Singapore, 1995).
[12] Muckenhoupt, B., ‘Weighted norm inequalities for the Hardy maximal function’, Trans. Amer. Math. Soc. 165 (1972), 207226.
[13] Muckenhoupt, B. and Wheeden, R. L., ‘Weighted norm inequalities for fractional integrals’, Trans. Amer. Math. Soc. 192 (1974), 261274.
[14] Nakai, E., ‘Recent topics of fractional integrals’, Sugaku Expositions 20(2) (2007), 215235.
[15] Nakai, E. and Sawano, Y., ‘Hardy spaces with variable exponents and generalized Campanato spaces’, J. Funct. Anal. 262 (2012), 36653748.
[16] Riveros, S. and Urciuolo, M., ‘Weighted inequalities for integral operators with some homogeneous kernels’, Czechoslovak Math. J. 55(2) (2005), 423432.
[17] Rocha, P. and Urciuolo, M., ‘On the H p - L q boundedness of some fractional integral operators’, Czechoslovak Math. J. 62(3) (2012), 625635.
[18] Rocha, P. and Urciuolo, M., ‘Fractional type integral operators on variable Hardy spaces’, Acta Math. Hungar. 143(2) (2014), 502514.
[19] Sawano, Y., ‘Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operators’, Integral Equations Operator Theory 77 (2013), 123148.
[20] Stein, E. M., Harmonic Analysis, Real-Variable Methods, Orthogonality, and Oscillatory Integrals (Princeton University Press, Princeton, NJ, 1993).
[21] Strömberg, J. O. and Torchinsky, A., Weighted Hardy Spaces, Lecture Notes in Mathematics, 131 (Springer, Berlin, 1989).
[22] Taibleson, M. H. and Weiss, G., ‘The molecular characterization of certain Hardy spaces’, Astérisque 77 (1980), 67149.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Related content

Powered by UNSILO

BOUNDEDNESS OF GENERALIZED RIESZ POTENTIALS ON THE VARIABLE HARDY SPACES

  • PABLO ROCHA (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.