[1]
Anderson, B. and Csima, B. F.,
*Degrees that are not degrees of categoricity*
. Notre Dame Journal of Formal Logic, vol. 57 (2016), no. 3, pp. 389–398.

[2]
Ash, C. J.,
*Recursive labelling systems and stability of recursive structures in hyperarithmetical degrees*
. Transactions of the American Mathematical Society, vol. 298 (1986), no. 2, pp. 497–514.

[3]
Ash, C. J.,
*Stability of recursive structures in arithmetical degrees*
. Annals of Pure and Applied Logic, vol. 32 (1986), no. 2, pp. 113–135.

[4]
Ash, C. J.,
*Categoricity in hyperarithmetical degrees*
. Annals of Pure and Applied Logic, vol. 34 (1987), no. 1, pp. 1–14.

[5]
Ash, C. J.,
*Labelling systems and r.e. structures*
. Annals of Pure and Applied Logic, vol. 47 (1990), no. 2, pp. 99–119.

[6]
Ash, C. J. and Knight, J. F., Computable Structures and the Hyperarithmetical Hierarchy, Studies in Logic and the Foundations of Mathematics, vol. 144, North-Holland, Amsterdam, 2000.

[7]
Ash, C. J., Knight, J. F., Manasse, M. S., and Slaman, T. A.,
*Generic copies of countable structures*
. Annals of Pure and Applied Logic, vol. 42 (1989), no. 3, pp. 195–205.

[8]
Csima, B. F., Franklin, J. N. Y., and Shore, R. A.,
*Degrees of categoricity and the hyperarithmetic hierarchy*
. Notre Dame Journal of Formal Logic, vol. 54 (2013), no. 2, pp. 215–231.

[9]
Chisholm, J., *Effective model theory vs. recursive model theory*, this Journal, vol. 55 (1990), no. 3, pp. 1168–1191.

[10]
Downey, R. G., Kach, A. M., Lempp, S., Lewis-Pye, A. E. M., Montalbán, A., and Turetsky, D. D.,
*The complexity of computable categoricity*
. Advances in Mathematics, vol. 268 (2015), pp. 423–466.

[11]
Fokina, E., Frolov, A., and Kalimullin, I.,
*Categoricity spectra for rigid structures*
. Notre Dame Journal of Formal Logic, vol. 57 (2016), no. 1, pp. 45–57.

[12]
Fokina, E. B., Kalimullin, I., and Miller, R.,
*Degrees of categoricity of computable structures*
. Archive for Mathematical Logic, vol. 49 (2010), no. 1, pp. 51–67.

[13]
Goncharov, S. S.,
*Autostability and computable families of constructivizations*
. Algebra and Logic, vol. 14 (1975), no. 6, pp. 392–409 (In Russian).

[14]
Goncharov, S. S.,
*The number of nonautoequivalent constructivizations*
. Algebra and Logic, vol. 16 (1977), no. 3, pp. 257–282, 377 (In Russian).

[15]
Goncharov, S. S. and Dzgoev, V. D.,
*Autostability of models*
. Algebra and Logic, vol. 19 (1980), no. 1, pp. 28–37 (In Russian).

[16]
Goncharov, S. S., Harizanov, V. S., Knight, J. F., McCoy, C. F. D., Miller, R. G., and Solomon, R.,
*Enumerations in computable structure theory*
. Annals of Pure and Applied Logic, vol. 136 (2005), no. 3, pp. 219–246.

[17]
Harizanov, V.,
*Some effects of Ash-Nerode and other decidability conditions on degree spectra*
. Annals of Pure and Applied Logic, vol. 55 (1991), no. 1, pp. 51–65.

[18]
Harrison-Trainor, M.,
*Degree spectra of relations on a cone*
. Memoirs of the American Mathematical Society, to appear.

[19]
Knight, J. F., *Degrees coded in jumps of orderings*, this Journal, vol. 51 (1986), no. 4, pp. 1034–1042.

[20]
Martin, D. A.,
*The axiom of determinateness and reduction principles in the analytical hierarchy*
. Bulletin of the American Mathematical Society, vol. 74 (1968), pp. 687–689.

[21]
Martin, D. A.,
*Borel determinacy*
. Annals of Mathematics (2), vol. 102 (1975), no. 2, pp. 363–371.

[22]
McCoy, C. F. D.,
*Finite computable dimension does not relativize*
. Archive for Mathematical Logic, vol. 41 (2002), no. 4, pp. 309–320.

[23]
Miller, R., *d-computable categoricity for algebraic fields*, this Journal, vol. 74 (2009), no. 4, pp. 1325–1351.

[24]
Montalbán, A., *Priority arguments via true stages*, this Journal, vol. 79 (2014), no. 4, pp. 1315–1335.

[25]
Montalbán, A.,
*A robuster Scott rank*
. Proceedings of the American Mathematical Society, vol. 143 (2015), no. 12, pp. 5427–5436.

[26]
Remmel, J. B.,
*Recursively categorical linear orderings*
. Proceedings of the American Mathematical Society, vol. 83 (1981), no. 2, pp. 387–391.

[27]
Scott, D.,
*Logic with denumerably long formulas and finite strings of quantifiers*
, Theory of Models (Proceedings of the 1963 International Symposium at Berkeley), North-Holland, Amsterdam, 1965, pp. 329–341.