Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-25T12:47:53.216Z Has data issue: false hasContentIssue false

Ordovician bryozoans from the Kanosh Formation (Whiterockian) of Utah, USA

Published online by Cambridge University Press:  14 July 2015

Andrej Ernst
Affiliation:
Institut für Geowissenschaften, Universität Kiel, Ludewig-Meyn-Strasse 10, D-24118, Kiel, Germany,
Paul D. Taylor
Affiliation:
Department of Palaeontology, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom,
Mark A. Wilson
Affiliation:
Department of Geology, The College of Wooster, Wooster, Ohio 44691, USA

Abstract

The Kanosh Formation of the Great Basin of western North America contains the oldest abundant and moderately diverse bryozoan fauna known from North America. Six species are here described from this formation at Ibex in the Confusion Range, Utah. They comprise three species of esthonioporine stenolaemates and three trepostomes. Two new genera (Ibexella and Kanoshopora) and three new species (I. multidiaphragmata, K. droserae, and Eridotrypa hindsi) are introduced. The endozone of Kanoshopora n. gen. is very unusual among bryozoans in being filled with vesicles that are divided by beaded walls into longitudinal files close to the boundary with the exozone.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anstey, R. L. 1987. Colony patterning and functional morphology of water flow in Paleozoic stenolaemate bryozoans, p. 18. In Ross, J. R. P. (ed.), Bryozoa: Present and Past. Western Washington University, Bellingham.Google Scholar
Anstey, R. L. and Pachut, J. F. 1995. Phylogeny, diversity history, and speciation in Paleozoic bryozoans, p. 239284. In Erwin, D. H. and Anstey, R. L. (eds.), New Approaches to Speciation in the Fossil Record. Columbia University Press, New York.Google Scholar
Astrova, G. G. 1965. [Morphology, history of development and system of the Ordovician and Silurian Bryozoa.] Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR, 106:1432. (In Russian) Google Scholar
Astrova, G. G. 1978. The history of development, system, and phylogeny of the Bryozoa: Order Trepostomata. Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR, 169:1240. (In Russian) Google Scholar
Bassler, R. S. 1911. The Early Paleozoic Bryozoa of the Baltic Provinces. Bulletin of the U.S. National Museum, 77:1382.Google Scholar
Bassler, R. S. 1952. Taxonomic notes on genera of fossil and Recent Bryozoa. Journal of the Washington Academy of Sciences, 42:381385.Google Scholar
Bergström, S. M. 1986. Biostratigraphic integration of Ordovician graptolite and conodont zones—a regional review. Geological Society Special Publication, 20:6178.Google Scholar
Boardman, R. S. 2001. The growth and function of skeletal diaphragms in the colony life of Lower Paleozoic Trepostomata (Bryozoa). Journal of Paleontology, 75:225240.2.0.CO;2>CrossRefGoogle Scholar
Borg, F. 1926. Studies on Recent cyclostomatous Bryozoa. Zoologiska Bidrag fran Uppsala, 10:181507.Google Scholar
Bork, K. B. and Perry, T. G. 1968. Bryozoa (Ectoprocta) of Champlanian age (Middle Ordovician) from northwestern Illinois and adjacent parts of Iowa and Wisconsin, Pt. II. Journal of Paleontology, 42:337355.Google Scholar
Boyer, D. L. and Droser, M. L. 2003. Shell beds of the Kanosh and Lehman formations of western Utah; paleoecological and paleoenvironmental interpretations. Geology Studies, 47:115.Google Scholar
Braithwaite, L. F. 1976. Graptolites from the Pogonip Group of western Utah. Geological Society of America, Special Paper, 166:1106.Google Scholar
Dybowski, W. 1877. Die Chaetetiden der Ostbaltischen Silur-Formation. Dorpat, St. Petersburg, 134 p.Google Scholar
Eichwald, E. 1829. Zoologia Specialis quam Expositis Animalibus tum Vivis, tum Fossilibus Potissimum Rossiae in Universum, et Polonia in Specie. Volume 1. Vilnae, 314 p.Google Scholar
Eichwald, E. 1856. Beitrag zur geographyschen Verbereitung der fossilen Thiere Russland. Bulletin de la Société Impériale des Naturalistes de Moscou, 29:88127,406–453,555–608.Google Scholar
Ethington, R. L. and Clark, D. L. 1981. Lower and Middle Ordovician conodonts from the Ibex area, western Millard County, Utah. Geology Studies, 28:1160.Google Scholar
Fortey, R. A. and Droser, M. L. 1996. Trilobites at the base of the Middle Ordovician, western U.S.A. Journal of Paleontology, 70:7399.Google Scholar
Fortey, R. A. and Droser, M. L. 1999. Trilobites from the base of the type Whiterockian (Middle Ordovician) in Nevada. Journal of Paleontology, 73:182201.CrossRefGoogle Scholar
Goryunova, R. V. 1996. Phylogeny of the Paleozoic Bryozoans. Nauka, Moscow, 165 p. (In Russian) Google Scholar
Hinds, R. W. 1970. Ordovician Bryozoa from the Pogonip Group of Millard County, western Utah. Brigham Young University Research Studies, Geology Series, 17(1):1940.Google Scholar
Hintze, L. F. 1951. Lower Ordovician detailed stratigraphic sections of western Utah. Utah Geological and Mineralogical Survey Bulletin, 39:199.Google Scholar
Hintze, L. F. 1973. Lower and Middle Ordovician stratigraphic sections in the Ibex area, Millard County, Utah. Brigham Young University Geology Studies, 20:336.Google Scholar
Hintze, L. F. 1988. Geologic history of Utah. Brigham Young University Geology Studies Special Publication, 7:1202.Google Scholar
Hu, Z.-X. and Spjeldnaes, N. 1991. Early Ordovician bryozoans from China. Bulletin de la Société des Sciences Naturelles de l'Ouest de la France, mémoire HS, 1:179185.Google Scholar
Kiepura, M. 1962. Bryozoa from the Ordovician erratic boulders of Poland. Acta Palaeontologica Polonica, 7:347428.Google Scholar
Loeblich, A. 1942. Bryozoa from the Ordovician Bromide Formation, Oklahoma. Journal of Paleontology, 16:413436.Google Scholar
McKinney, F. K. 1971. Trepostomatous Ectoprocta (Bryozoa) from the lower Chickamauga Group (Middle Ordovician), Wills Valley, Alabama. Bulletins of American Paleontology, 60(No. 267):195333.Google Scholar
Miller, S. A. 1889. North American Geology and Paleontology. Western Methodist Book Concern, Cincinnati, 664 p.Google Scholar
Mitchell, C. E. 1992. Evolution of the Diplograptacea and the international correlation of the Arenig-Llanvirn boundary, p. 171184. In Webby, B. D. and Laurie, J. (eds.), Global Perspectives on Ordovician Geology. Balkema Press, Rotterdam.Google Scholar
Modzalevskaya, E. A. 1953. [Trepostomata of the Ordovician of East Baltic and their stratgraphic significance.] Trudy Vsesojuznogo Nauchnoissledovatelskogo Geologo-Razvedochnogo Instituta (VNIGRI), 78:91167. (In Russian) Google Scholar
Nicholson, H. A. 1879. On the Structure and Affinities of the “Tabulate Corals” of the Palaeozoic Period with Critical Descriptions of Illustrative Species. Blackwood & Sons, Edinburgh and London, 342 p.Google Scholar
Nicholson, H. A. 1881. On the structure and affinities of the genus Monticulipora and its subgenera, with critical descriptions of illustrative species. Blackwood & Sons, Edinburgh and London, 240 p.Google Scholar
Palmer, T. J. and Wilson, M. A. 2004. Calcite precipitation and dissolution of biogenic aragonite in shallow Ordovician calcite seas. Lethaia, 37:417427.Google Scholar
Peters, S. E. 2004. Evenness of Cambrian–Ordovician benthic marine communities in North America. Paleobiology, 30:325346.Google Scholar
Riva, J. 1993. Yutagraptus mantuanus Riva in Rickards 1994, a pendent xiphograptid from the Lower Ordovician of Utah, U.S.A., p. 113. In Chen, Xu, Erdtmann, B.-D., and Ni, Yu-Nan (eds.), Graptolite Research Today: Proceedings of the Fourth International Graptolite Conference, Nanjing Institute of Geology and Palaeontology, China, September 1990. Nanjing University Press, Nanjing.Google Scholar
Ropot, V. F. and Pushkin, V. I. 1987. Ordovician of Belorussia. Institute of Geochemistry and Geophysics, Minsk, 234 p. (In Russian) Google Scholar
Ross, R. J. Jr. 1951. Stratigraphy of the Garden City Formation in northeastern Utah and its trilobite faunas. Yale University Peabody Museum Bulletin, 6:1161.Google Scholar
Ross, R. J. Jr., James, N. P., Hintze, L. F., and Poole, F. G. 1989. Architecture and evolution of a Whiterockian (early Middle Ordovician) carbonate platform. Basin Ranges of Western U.S.A. Society of Economic Paleontologists and Mineralogists Special Publication, 44:167185.Google Scholar
Shunatova, N. N. and Ostrovsky, A. N. 2002. Group autozooidal behaviour and chimneys in marine bryozoans. Marine Biology, 140:503518.Google Scholar
Taylor, P. D. 1999. Bryozoa, p. 623646. In Savazzi, E. (ed.), Functional Morphology of the Invertebrate Skeleton. Wiley, Chichester.Google Scholar
Taylor, P. D. and Cope, J. C. W. 1987. A trepostome bryozoan from the Lower Arenig of south Wales: Implications of the oldest described bryozoan. Geological Magazine, 124:367371.Google Scholar
Taylor, P. D. and Ernst, A. 2004. Bryozoans, p. 147156. In Webby, B. D., Paris, F., Droser, M. L., and Percival, I. G. (eds.), The Great Ordovician Biodiversification Event. Columbia University Press, New York.CrossRefGoogle Scholar
Taylor, P. D. and Wilson, M. A. 1999. Dianulites Eichwald, 1829: An unusual Ordovician bryozoan with a high-magnesium calcite skeleton. Journal of Paleontology, 73:3848.Google Scholar
Ulrich, E. O. 1882. American Palaeozoic Bryozoa. The Journal of the Cincinnati Society of Natural History, 5:233257.Google Scholar
Ulrich, E. O. 1893. On Lower Silurian Bryozoan of of Minnesota. Geological and Natural History Survey of Minnesota, final report, 3(1):96332.Google Scholar
Vinassa De Regny, P. 1921. Sulla classificazione die trepostomidi. Societa Italiana di Scienze Naturali Atti, 59:212231.Google Scholar
Webby, B. D., Paris, F., Droser, M. L., and Percival, I. G. (eds.). 2004. The Great Ordovician Biodiversification Event. Columbia University Press, New York, 484 p.Google Scholar
Wilson, M. A., Palmer, T. J., Guensburg, T. E., Finton, C. D., and Kaufman, L. E. 1992. The development of an Early Ordovician hardground community in response to rapid sea-floor calcite precipitation. Lethaia, 25:1934.Google Scholar